Project description:Cholera is a deadly diarrheal disease that affects millions of people globally. Although V. cholerae, the causative agent of the disease, has been extensively studied in isolation, it was relatively recently that scientists started investigating its interactions with the gut microbiota. Our group and others previously showed that microbiota-derived metabolites significantly influence V. cholerae behavior. By investigating how an organic extract of human feces affects V. cholerae gene expression, we recently showed that gut metabolites strongly suppress swimming motility, a virulence factor important for host colonization. Interestingly, extracts of pure cultures of a single gut commensal, Enterocloster citroniae, recapitulated this inhibitory effect. Here, we present a comprehensive examination of the effect of small molecules produced by E. citroniae and related species on V. cholerae behavior. We show that E. citroniae small molecules inhibit motility by various V. cholerae strains. We also show that several phylogenetically related species produce this activity, although the magnitude of the effect varies between strains. Using biofilm formation assays in static and shear flow conditions, we show that V. cholerae strongly induces biofilm formation in response to E. citroniae metabolites. Transcriptome and reporter analyses show that several genes involved in the synthesis of an extracellular polysaccharide are induced by growth in the presence of E. citroniae metabolites. Lastly, we show that V. cholerae interactions with host epithelial cells are also modulated by compounds produced by this commensal. These findings advance our understanding of microbiome-pathogen interactions and how commensal bacteria influence V. cholerae virulence through the production of small molecules. In the future, this knowledge may be used to design novel microbiome-based therapeutic approaches to combat cholera and other infections.
Project description:Urolithins are a class of bioactive metabolites derived from the metabolism of dietary ellagitannins by the human gut microbiota. In the gut, urolithins are dehydroxylated regioselectively based on microbiota composition and activity. A single 9-hydroxy urolithin dehydroxylase (ucd) operon in gut resident Enterocloster species has been described to date; however, most enzymes in the urolithin metabolic pathway remain uncharacterized. Here, we investigate urolithin cross-feeding between members of the gut microbiota and discover a novel urolithin dehydroxylase in a subset of Enterocloster species. We show that urolithin intermediates, released by gut resident Gordonibacter species during ellagic acid metabolism, are dehydroxylated at both the 9- and 10-positions by E. asparagiformis, E. citroniae, and E. pacaense, but not E. bolteae. Using untargeted proteomics, we uncover a 10-hydroxy urolithin dehydroxylase operon, termed uxd, responsible for these species-specific differences in urolithin metabolism. By inducing uxd expression with diverse urolithins, we show that 9-hydroxy urolithins are required for uxd transcription and 10-position dehydroxylation. Collectively, this study reveals some of the genes, proteins, and substrate features underlying differences in urolithin metabolism by the human gut microbiota.