Project description:Although hematopoietic stem and progenitor cells (HSPCs) become activated in the cell-cycle status after chemotherapy to supply hematopoietic loss, the detailed mechanisms of activation remain unknown. Here we show that Sca1+ macrophages play a key role for bone marrow (BM) recovery through granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion. By analyzing gene expression profiles of HSPCs lodged in 5-fluolouracil (5-FU)-treated mice, we found GM-CSF as a key proliferative signal. Sca1+ macrophages in BM after 5-FU treatment expressed high levels of GM-CSF. GM-CSF-knockout mice treated with 5-FU were lethal because of severe BM suppression. Up-regulation of Csf2 in Sca1+ macrophages by 5-FU was suppressed in MyD88-knockout mice, suggesting that TLR signaling via damage-associated molecular patterns caused by cell death is critical for up-regulation of Csf2. In 5-FU treated BM, majority of Sca1+ macrophages and transplanted HSPCs locate perivascular areas. These findings together indicate that Sca1+ macrophages induce HSPCs to proliferate through GM-CSF signaling in the stressed BM environments.
Project description:Although hematopoietic stem and progenitor cells (HSPCs) become activated in the cell-cycle status after chemotherapy to supply hematopoietic loss, the detailed mechanisms of activation remain unknown. Here we show that Sca1+ macrophages play a key role for bone marrow (BM) recovery through granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion. By analyzing gene expression profiles of HSPCs lodged in 5-fluolouracil (5-FU)-treated mice, we found GM-CSF as a key proliferative signal. Sca1+ macrophages in BM after 5-FU treatment expressed high levels of GM-CSF. GM-CSF-knockout mice treated with 5-FU were lethal because of severe BM suppression. Up-regulation of Csf2 in Sca1+ macrophages by 5-FU was suppressed in MyD88-knockout mice, suggesting that TLR signaling via damage-associated molecular patterns caused by cell death is critical for up-regulation of Csf2. In 5-FU treated BM, majority of Sca1+ macrophages and transplanted HSPCs locate perivascular areas. These findings together indicate that Sca1+ macrophages induce HSPCs to proliferate through GM-CSF signaling in the stressed BM environments.
Project description:Metabolic cues are crucial for regulating hematopoietic stem and progenitor cells (HSPCs). However, the metabolic profile of human HSPCs remains poorly understood due to the limited number of cells and the scarcity of bone marrow samples. Here, we present the integrated metabolome, lipidome and transcriptome of human adult HSPCs (lineage-, CD34+, CD38-) upon differentiation, aging and acute myeloid leukemia (AML). The combination of low-input targeted metabolomics with our newly optimized low-input untargeted lipidomics workflow allows us to detect up to 219 metabolites and lipids from a starting material of 3,000 and 5,000 HSPCs, respectively. Among other findings, we observe elevated levels of the essential nutrient choline in HSPCs compared to downstream progenitors, which decline upon aging and further decrease in AML. Functionally, we show that choline supplementation fuels lipid production in HSPCs and enhances stemness. Overall, our study provides a comprehensive resource identifying metabolic changes that can be utilized to promote and enhance human stem cell function.
Project description:The BM-derived CD45+/Sca1+ cells are haematopoietic stem/progenitor cells that have the ability to circulate and migrate and engraft to the muscle tissue, and therefore they are of particular interest. Notably, these cells retain their haematopoietic potential, as revealed both by in vitro and in vivo assays; but they also acquire myogenic potential, as shown by their ability to participate in muscle regeneration. Whether, this latter remarkable ability is the result of the reprogramming of the BM-CD45+/Sca1+ cells and the activation of a myogenic molecular program within these cells, remains controversial. This study aims to clarify this aspect of the process, investigating the role of the muscle microenviroment and key myogenic transcription factors. Keywords: CD45+/Sca1+ cells, BM, muscle CD45+/Sca1+ cells isolated from the BM or the muscle were processed fresh and their RNA was extracted. Moreover, CD45+/Sca1+ cells isolated from the muscle of BM transplanted or untransplanted mice after injury with Cardiotoxin were processed fresh and their RNA was extracted.
Project description:The BM-derived CD45+/Sca1+ cells are haematopoietic stem/progenitor cells that have the ability to circulate and migrate and engraft to the muscle tissue, and therefore they are of particular interest. Notably, these cells retain their haematopoietic potential, as revealed both by in vitro and in vivo assays; but they also acquire myogenic potential, as shown by their ability to participate in muscle regeneration. Whether, this latter remarkable ability is the result of the reprogramming of the BM-CD45+/Sca1+ cells and the activation of a myogenic molecular program within these cells, remains controversial. This study aims to clarify this aspect of the process, investigating the role of the muscle microenviroment and key myogenic transcription factors. Keywords: CD45+/Sca1+ cells, BM, muscle