Project description:This dataset contains spatiotemporal transcriptome information on different axial progenitors throughout mouse axis elongation. Neuromesodermal Progenitors (NMPs), Lateral and Paraxial Mesoderm Progenitors (LPMPs), and Notochord Progenitors (NotoPs) show distinct expression profiles. Extensive similarity exist between NMPs and their immediate mesoderm-committed descendants at each stage investigated. Over time transcriptional changes occur in LPMPs and NMPs, with the major change occurring in NMPs between early somitogenesis and completion of trunk morphogenesis. In contrast, NotoPs contain a more stable transcriptome over time.
Project description:In order to understand the relationship between cellular diversity and pallium regions, single-nucleus RNA-seq (snRNA-seq) was performed in 3 microdissected regions from the axolotl pallium: medial, dorsal, and lateral.
Project description:The coordinated transcription of genes involves the regulated release of RNA polymerase II (RNAPII) from promoter-proximal sites into active elongation. DNA lesions in transcribed strands block elongation and induce a strong transcriptional arrest. The transcription-coupled repair (TCR) pathway efficiently removes transcription-blocking DNA lesions, but this is not sufficient to resume transcription. Through proteomics screens, we find that the TCR-specific CSB protein loads the evolutionary conserved PAF1 complex (PAF1C) onto RNAPII in promoter-proximal regions in response to DNA damage. PAF1C is dispensable for TCR-mediated repair, but is essential for recovery of RNA synthesis after UV irradiation, suggesting an uncoupling between DNA repair and transcription recovery. Moreover, we find that PAF1C promotes RNAPII pause release in promoter-proximal regions and subsequently acts as a processivity factor that stimulates transcription elongation throughout genes. Our findings expose the molecular basis for a non-canonical PAF1C-dependent pathway that restores transcription throughout the human genome after genotoxic stress.
Project description:Epigenetic regulation of chromatin plays a critical role in controlling embryonic stem (ES) cell self-renewal and pluripotency. However, the roles of histone demethylases and activating histone modifications such as trimethylated histone 3 lysine 4 (H3K4me3) in transcriptional events such as RNA polymerase II (RNAPII) elongation and alternative splicing are largely unknown. In this study, we show that KDM5B, which demethylates H3K4me3, plays an integral role in regulating RNAPII occupancy, transcriptional initiation and elongation, and alternative splicing events in ES cells. Depletion of KDM5B leads to altered RNAPII promoter occupancy, and decreased RNAPII initiation and elongation rates at active genes and at genes marked with broad H3K4me3 domains. Moreover, our results demonstrate that spreading of H3K4me3 from promoter to gene body regions, which is mediated by depletion of KDM5B, modulates RNAPII elongation rates and RNA splicing in ES cells. We further show that KDM5B is enriched nearby alternatively spliced exons, and depletion of KDM5B leads to altered levels of H3K4 methylation in alternatively spliced exon regions, which is accompanied by differential expression of these ASEs. Altogether, our data indicate an epigenetic role for KDM5B in regulating RNAPII elongation and alternative splicing, which may support the diverse mRNA repertoire in ES cells.
Project description:Epigenetic regulation of chromatin plays a critical role in controlling embryonic stem (ES) cell self-renewal and pluripotency. However, the roles of histone demethylases and activating histone modifications such as trimethylated histone 3 lysine 4 (H3K4me3) in transcriptional events such as RNA polymerase II (RNAPII) elongation and alternative splicing are largely unknown. In this study, we show that KDM5B, which demethylates H3K4me3, plays an integral role in regulating RNAPII occupancy, transcriptional initiation and elongation, and alternative splicing events in ES cells. Depletion of KDM5B leads to altered RNAPII promoter occupancy, and decreased RNAPII initiation and elongation rates at active genes and at genes marked with broad H3K4me3 domains. Moreover, our results demonstrate that spreading of H3K4me3 from promoter to gene body regions, which is mediated by depletion of KDM5B, modulates RNAPII elongation rates and RNA splicing in ES cells. We further show that KDM5B is enriched nearby alternatively spliced exons, and depletion of KDM5B leads to altered levels of H3K4 methylation in alternatively spliced exon regions, which is accompanied by differential expression of these ASEs. Altogether, our data indicate an epigenetic role for KDM5B in regulating RNAPII elongation and alternative splicing, which may support the diverse mRNA repertoire in ES cells.
Project description:Primitive erythropoiesis in the mouse yolk sac is followed by definitive erythropoiesis resulting in adult erythrocytes. In comparison to definitive erythropoiesis little is known about the genes that control the embryonic erythroid program. The purpose of this study was to generate a profile of mouse embryonic yolk sac erythroid cells and identify novel regulatory genes differentially expressed in erythroid compared to non-erythroid (epithelial cells). The identification of these genes will contribute to a greater understanding of how the primitive erythroid program is controlled. This work will have clinical implications for treating sickle cell anemia and β-thalassemia. Activating genes in adult erythroid cells that increase embryonic or fetal globin gene expression may be a therapeutic approach to treat individuals with these disorders. Keywords: Comparison between mouse embryonic day 9.5 yolk sac microdissected primitive erythroid precursors and epithelial cells