Project description:D-galactose orally intake ameliorate DNCB-induced atopic dermatitis by modulating microbiota composition and quorum sensing. The increased abundance of bacteroidetes and decreased abundance of firmicutes was confirmed. By D-galactose treatment, Bacteroides population was increased and prevotella, ruminococcus was decreased which is related to atopic dermatitis.
Project description:Host-microbiome-dietary interactions play crucial roles in regulating human health, yet direct functional assessment of their interplays, cross-regulations and downstream disease impacts remains challenging. We adopted metagenome-informed metaproteomics (MIM), in both mice and humans, to simultaneously explore host, dietary, and species-level microbiome interactions across diverse scenarios, including commensal and pathogen colonization, nutritional modifications, and antibiotic-induced perturbations. Implementation of MIM in murine auto-inflammation and in human IBD characterized a ‘compositional dysbiosis’ and a concomitant, species-specific ‘functional dysbiosis’ driven by suppressed commensal responses to inflammatory host signals. Microbiome transfers unraveled early-onset kinetics of these host-commensal cross-responsive patterns, while predictive analyses identified candidate fecal host-microbiome IBD biomarker protein pairs outperforming S100A8/S100A9 (calprotectin). Importantly, a simultaneous fecal nutrient assessment enabled determination of IBD-related consumption patterns, dietary treatment compliance and small-intestinal digestive aberrations. Collectively, a parallelized dietary-bacterial-host MIM assessment functionally uncovers trans-kingdom interactomes shaping gastrointestinal ecology, while offering personalized diagnostic and therapeutic insights into microbiome-associated disease.