Project description:Flying foxes (family Pteropodidae) have distinct life histories given their size, characterized by longevity, low reproductive output, and long gestation. However, they tend to decouple the age at which sexual maturity is reached from the age at which they reach adult dimensions. We examined growth, maturation, and reproduction in the Critically Endangered Christmas Island flying fox (Pteropus natalis) to determine the timing of sex-specific life cycle events and patterns of growth. We estimated that juvenile growth in forearm length and body mass increased at a mean rate of 0.029 ± 0.005 mm/day and 0.33 ± 0.07 g/day for both males and females alike. Using these growth rates, we determined that the birth of pups occurs between December and March, with young becoming volant between June and August. The age at maturation for P. natalis is one of the oldest among all bat species. Juvenile males began to mature 15 months after birth and reached maturity 27 months after birth. Females reached maturity 24 months after birth at a significantly smaller body mass (3.6%) and forearm length (1.4%) than males. Significant sexual dimorphism and bimaturation was observed, with juvenile males being 1.5% and adult males being 1.9% larger on average than females for skeletal dimensions only. Growth and maturation are even slower in P. natalis than in the few other Pteropus species studied to date. The slow growth and delayed maturation of P. natalis imply slower potential population growth rates, further complicating the recovery of this Critically Endangered single-island endemic.
Project description:Due to their geographical isolation and small populations, insular bats may not be able to maintain acute immunizing viruses that rely on a large population for viral maintenance. Instead, endemic transmission may rely on viruses establishing persistent infections within hosts or inducing only short-lived neutralizing immunity. Therefore, studies on insular populations are valuable for developing broader understanding of viral maintenance in bats. The Christmas Island flying-fox (CIFF; Pteropus natalis) is endemic on Christmas Island, a remote Australian territory, and is an ideal model species to understand viral maintenance in small, geographically isolated bat populations. Serum or plasma (n = 190), oral swabs (n = 199), faeces (n = 31), urine (n = 32) and urine swabs (n = 25) were collected from 228 CIFFs. Samples were tested using multiplex serological and molecular assays, and attempts at virus isolation to determine the presence of paramyxoviruses, betacoronaviruses and Australian bat lyssavirus. Analysis of serological data provides evidence that the species is maintaining a pararubulavirus and a betacoronavirus. There was little serological evidence supporting the presence of active circulation of the other viruses assessed in the present study. No viral nucleic acid was detected and no viruses were isolated. Age-seropositivity results support the hypothesis that geographically isolated bat populations can maintain some paramyxoviruses and coronaviruses. Further studies are required to elucidate infection dynamics and characterize viruses in the CIFF. Lastly, apparent absence of some pathogens could have implications for the conservation of the CIFF if a novel disease were introduced into the population through human carriage or an invasive species. Adopting increased biosecurity protocols for ships porting on Christmas Island and for researchers and bat carers working with flying-foxes are recommended to decrease the risk of pathogen introduction and contribute to the health and conservation of the species.