Project description:A Saccharomyces cerevisiae mutant with improved coniferyl aldehyde resistance was obtained by using an evolutionary engineering strategy, based on successive batch cultivation under gradually increased coniferyl aldehyde concentration. The mutant strain BH13 was selected which could grow at a coniferyl aldehyde concentration that the reference strain could not grow at all. Whole-genome transcriptomic analysis of BH13 with respect to the reference strain was performed to identify differences in gene expression levels between the two strains.
Project description:Saccharomyces cerevisiae IMS0002 which, after metabolic and evolutionary engineering, ferments the pentose sugar arabinose. Glucose and arabinose-limited anaerobic chemostat cultures of IMS0002 and its non-evolved ancestor IMS0001 were subjected to transcriptome analysis to identify key genetic changes contributing to efficient arabinose utilization by strain IMS0002.
Project description:A propolis-resistant Saccharomyces cerevisiae mutant strain was obtained using an evolutionary engineering strategy based on successive batch cultivation under gradually increasing propolis levels. The mutant strain FD 11 was selected at a propolis concentration that the reference strain could not grow at all. Whole-genome transcriptomic analysis of FD11 was performed with respect to its reference strain to determine differences in gene expression levels between the two strains. Saccharomyces cerevisiae
Project description:In this study, we have developed a highly SO2-stress-resistant yeast (Saccharomyces cerevisiae) strain [F3] using evolutionary engineering, by successive batch selection at gradually increased SO2 levels. The evolved F3 strain was resistant to 1.0 mM SO2 stress, which was strongly inhibitory to the reference strain. Whole-transcriptomic analysis of F3 was performed with respect to its reference strain to determine differences in gene expression levels between the two strains. Saccharomyces cerevisiae