Project description:We seek to determine the effects of foliar endophytes on soybean physiological traits, and their effect on plant responses to elevated carbon dioxide. We are using three dominant endophytes extracted from the SoyFACE facility at UIUC.
Project description:Two potato cultivars, Russet Burbank and Bionta, were inoculated with three different endophytes containing different AHL types. The impact of the endophytes to the different cultivars was measured by gene expression analysis with a customized microarray B. phytofirmans type strain PsJN was originally isolated as a contaminant from surface-sterilized, Glomus vesculiferum-infected onion roots (Nowak et al., 1998), whereas strain P6 RG6-12 was isolated from the rhizosphere of a grassland in the Netherlands (Salles et al., 2006). This strain was selected based on its similarity to strain PsJN based on 16S rRNA gene homology, and similar phenotypic features. Both strains were generally cultivated on King's medium (King et al., 1954). For the mutant AHL to the strain B. phytofirmans PsJN a quorum quenching approach as described by Wopperer et al., 2006 was employed. Plasmid pMLBAD-aiiA, which contains aiiA, the Bacillus sp. 240B1 lactonase gene, was transferred to B. phytofirmans PsJN by triparental mating as described by de Lorenzo and Timmis (1994). 2 cultivars, 3 endophytes
Project description:Two potato cultivars, Russet Burbank and Bionta, were inoculated with three different endophytes containing different AHL types. The impact of the endophytes to the different cultivars was measured by gene expression analysis with a customized microarray
Project description:Recent attempts to increase endogenous disease resistance of plants by overexpression of anti-fungal transgenes have shown a potential of this method. However, it has also been shown that such improvements are usually small. One of the obvious reasons for this low anti-fungal effect might be the regulation of endogenous genes in parallel. In this project, we will study the effect of anti-fungal transgenes on the endogenous gene expression. Such effects might relate to substantial equivalence which is a biosafety issue of concern to the public. The GeneChip Wheat Genome Array will be used to detect expression of defence response genes and key genes of metabolic pathways. We will use wheat plants transformed with anti-fungal gene of specific effect against a small group of seed transmitted, pathogenic fungi (KP4 against smuts and bunts). Transformed spring wheat line will be challenged by stinking smut (inhibited by KP4). The effect on the endogenous gene expression will be tested for plants grown in the field in collaboration with the USDA Department. This work will contribute to our understanding of plant defence responses in general and may allow improving strategies to strengthen these responses.
Project description:Recent attempts to increase endogenous disease resistance of plants by overexpression of anti-fungal transgenes have shown a potential of this method. However, it has also been shown that such improvements are usually small. One of the obvious reasons for this low anti-fungal effect might be the regulation of endogenous genes in parallel. In this project, we will study the effect of anti-fungal transgenes on the endogenous gene expression. Such effects might relate to substantial equivalence which is a biosafety issue of concern to the public. The GeneChip Wheat Genome Array will be used to detect expression of defence response genes and key genes of metabolic pathways. We will use wheat plants transformed with anti-fungal gene of specific effect against a small group of seed transmitted, pathogenic fungi (KP4 against smuts and bunts). Transformed spring wheat line will be challenged by stinking smut (inhibited by KP4). The effect on the endogenous gene expression will be tested for plants grown in the field in collaboration with the USDA Department. This work will contribute to our understanding of plant defence responses in general and may allow improving strategies to strengthen these responses. Teliospores of pathogenic races T-1, T-5 and T-16 of T. caries provided by a collection in Aberdeen, ID, USA were used for the tests. Seeds of the genetically engineered Swiss spring wheat variety Greina (GrKP4) and the null-segregant control line (Gr0) were coated with spores and Individual plants were scored for bunt symptoms. For microarray analysis only samples inoculated with T1 and T16 were used.