Project description:Bacterial vaginosis (BV) is the most common vaginal infection in women of reproductive age and has been associated with serious health complications, mainly in pregnant women. It is characterized by a decrease in the number of Lactobacillus species in the healthy vaginal microbiota and an overgrowth of strict and facultative anaerobic bacteria that develop a polymicrobial biofilm. Despite over 60 years of research investigating BV, its etiology is not fully understood. Gardnerella spp. is a crucial microorganism that contributes to the formation of the biofilm and the development of BV, but the role of other BV-associated bacteria is not clear. Nevertheless, Fannyhessea vaginae (previously known as Atopobium vaginae) is a highly specific species for BV, and co-colonization with Gardnerella is thought to be a very specific diagnostic marker. The diagnosis of BV still presents some limitations, since currently used methods often fail to accurately detect BV. This work aims to develop a novel peptide nucleic acid (PNA) probe targeting F. vaginae. This probe was further validated in a multiplex assay, which included a Gardnerella-specific PNA probe, as a possible method for diagnosis of BV, and was compared with quantification by qPCR. The new PNA probe showed excellent sensitivity and specificity and could discriminate F. vaginae-Gardnerella biofilms, confirming the potential to be used for the detection of BV-associated pathogens.
Project description:Bacterial vaginosis (BV), the most common vaginal infection worldwide, is characterized by the development of a polymicrobial biofilm on the vaginal epithelium. While Gardnerella spp. have been shown to have a prominent role in BV, little is known regarding how other species can influence BV development. Thus, we aimed to study the transcriptome of Gardnerella vaginalis, Fannyhessea vaginae, and Prevotella bivia, when growing in triple-species biofilms. Single and triple-species biofilms were formed in vitro, and RNA was extracted and sent for sequencing. cDNA libraries were prepared and sequenced. Quantitative PCR analysis (qPCR) was performed on the triple-species biofilms to evaluate the biofilm composition. The qPCR results revealed that the triple-species biofilms were mainly composed by G. vaginalis and P. bivia was the species with the lowest percentage. The RNA-sequencing analysis revealed a total of 432, 126, and 39 differentially expressed genes for G. vaginalis, F. vaginae, and P. bivia, respectively, when growing together. Gene ontology enrichment of G. vaginalis downregulated genes revealed several functions associated with metabolism, indicating a low metabolic activity of G. vaginalis when growing in polymicrobial biofilms. This work highlighted that the presence of 3 different BV-associated bacteria in the biofilm influenced each other's transcriptome and provided insight into the molecular mechanisms that enhanced the virulence potential of polymicrobial consortia. These findings will contribute to understand the development of incident BV and the interactions occurring within the biofilm.
Project description:RNA-Seq of 14 tissues from a female adult olive baboon (Papio anubis) from the non-human primate reference transcriptome resource (NHPRTR) project