Project description:By comparing mouse fibroblasts from two parental strains (Bl6 and Spretus) with fibroblasts from their first generation offspring (F1) we can detect allele specific expression of proteins. The Bl6 and Spretus lines are evolutionary distant and harbour many SNPs in their genomes which when synonomous we can detect on the protein level using mass spectrometry. By mixing SILAC labeled Bl6, Spretus and F1 offspring cell lines we can detect peptides shared between all three cell lines and also SNP peptides that are only expressed in the F1 cells and either Bl6 or Spretus cells. By comparing the abundance of the shared peptides and the SNP peptides we can quantify how much of a protein in the F1 cells that comes from the paternal or maternal allele. This data were then further compared to polysome profiling data. Azidohomoalanine labeling was used to enrich newly synthesized proteins from the three cell lines.
Project description:In this study, the effects of a syntrophic methanogen on the growth of Pecoramyces sp. F1 was investigated by characterizing fermentation profiles, as well as functional genomic, transcriptomic, and proteomic analysis. The estimated genome size, GC content, and protein coding regions of strain F1 are 106.83 Mb, 16.07%, and 23.54%, respectively. Comparison of the fungal monoculture with the methanogen co-culture demonstrated that during the fermentation of glucose, the co-culture initially expressed and then down-regulated a large number of genes encoding both enzymes involved in intermediate metabolism and plant cell wall degradation. However, the number of up-regulated proteins doubled at the late-growth stage in the co-culture. In addition, we provide a mechanistic understanding of the metabolism of this fungus in co-culture with a syntrophic methanogen. Further experiments are needed to explore this interaction during degradation of more complex plant cell wall substrates.