Project description:Using Affymetrix GeneChips, we analyzed expression profiles of SP cells from EOM and TA. 348 differentially expressed transcripts defined the EOM-SP transcriptome: 229 upregulated in EOM-SP and 119 in TA-SP. Keywords: Expression Profiling
Project description:In rainbow trout, type A spermatogonia can be split into SP cells and non-SP cells by the ability to exclude Hoechst 33342 dye (H33342). The H33342 fluorescence of SP cells are lower than that of non-SP cells, after H33342 staining. To investigate whether SP cells were transcriptomically distinct from non-SP cells, we compared the transcriptome of these cells. We used fluorescence-activated cell sorting (FACS) to isolate SP cells and non-SP cells from the type A spermatogonia in rainbow trout.
2013-08-06 | GSE49565 | GEO
Project description:Genome of Epiperipatus broadwayi (Onychophora: Peripatidae)
Project description:To study the mechanisms of Ni resistance in the metal resistant Acidiphilium sp. PM, the transcriptome of Acidiphilium sp. PM was studied 5min and 30 min after the addition of 10mM Ni and compared to the transcriptome in untreated cells.
Project description:Using Affymetrix GeneChips, we analyzed expression profiles of SP cells from EOM and TA. 348 differentially expressed transcripts defined the EOM-SP transcriptome: 229 upregulated in EOM-SP and 119 in TA-SP. Experiment Overall Design: Six independently separated EOM and six TA SP cell preparations were used for microarray analysis using the Affymetrix® Mouse 430 ver 2.0 GeneChip arrays.
Project description:Welan gum is mainly produced by Sphingomonas sp. ATCC 31555 and has broad applications in industry such as that in cement production. Both carbon and nitrogen sources are essential for welan production. However, how nitrogen sources affect the metabolism and gene transcription of welan remains elusive. Here, we used next-generation sequencing RNA-seq to analyze the transcriptome of Sphingomonas sp. ATCC 31555 in the presence of inorganic or organic nitrogen sources. Enriched gene expression and pathway analysis suggest that organic nitrogen sources significantly enhanced the expression of genes in central metabolic pathways of Sphingomonas sp. ATCC 31555 and those critical for welan synthesis compared to that observed using inorganic nitrogen sources. The present study improves our understanding of the molecular mechanism underlying the use of nitrogen in welan synthesis in Sphingomonas sp., as well as provides an important transcriptome resource for Sphingomonas sp. in relation to nitrogen sources.