Project description:Brevicompanines are natural products isolated from the culture filtrate of the fungus Penicillium brevicompactum. They showed plant growth regulating properties in several species including lettuce, rice or Arabidopsis thaliana. We used microarrays to gather information about the reprogramming of gene transcription when Arabidopsis leaves were treated with Brevicompanine C (BrvC) that showed significant activity in plant growth assays.
Project description:Transcriptional profiling of Arabidopsis thaliana seedlings treated with cyanamid, highlighting to the physiological function of phytochemicals by observing early response of gene expressions in Arabidopsis seedlings
Project description:Transcriptional profiling of Arabidopsis thaliana seedlings treated with goniothalamin, highlighting to the physiological function of phytochemicals by observing early response of gene expressions in Arabidopsis seedlings.
Project description:Genes of the of Arabidopsis thaliana guard cells transcriptome that respond to high CO2 and darkness were identified and compared to the ABA- and low humidity treated samples of Experiment GSE41054 in Arabidopsis thaliana enriched guard cell samples.
Project description:Transcriptional profiling of Arabidopsis thaliana seedlings treated with safranal, highlighting to the physiological function of plant volatile chemicals by observing early response of gene expressions in Arabidopsis seedlings.
Project description:Transcriptional profiling of Arabidopsis thaliana seedlings treated with auxin (indole-3-acetic acid), highlighting to the physiological function of auxin by observing early response of gene expressions in Arabidopsis seedlings.
Project description:In-vivo induced establishment and activity of the interfascicular cambium in Arabidopsis thaliana stems under NPA treatments. We used microarrays to detail the global programme of gene expression underlying the establishment and activity of the interfascicular cambium.
Project description:Sound vibration (SV) causes various developmental and physiological changes in plants. It strongly suggests the existence of sophisticated molecular mechanisms for SV perception and signaling in plants. However, the underlying molecular mechanism of SV-mediated plant responses remains elusive. Herein, we investigated the transcript changes in Arabidopsis thaliana upon five different single frequencies of SV treatment.
Project description:Transcriptional profiling of Arabidopsis thaliana seedlings treated with trans-2-hexenal, highlighting to the physiological function of plant volatile chemicals by observing early response of gene expressions in Arabidopsis seedlings.