Project description:In this study, we have performed Illumina based RNA sequencing to characterize the transcriptome and expression profiles of genes expressed in 5 tissues of P. japonicus. RNA sequencing and de novo transcriptome assembly for P. japonicus resulted in a total of 135,235 unigenes with 78,794 (58.24%) unigenes being annotated using NCBI-nr database. Transcriptome profile and GO enrichment analysis for 5 tissues of P. japonicus showed that although each tissue was characterized by several unique unigenes with leaf showing the most unique unigenes among all, overall processes were evenly conserved across all tissues. Examination of 5 tissues of Panax japonicus
Project description:Ginsenosides are a class of natural product triterpene saponins and almost exclusively in the plant genus Panax which has a long history of use as dietary supplements. Pharmacological research demonstrated that ginsenosides have multiple bioactivities. Ginsenoside is produced at high levels within Panax japonicus, and we have performed Lable-free quantitaion analysis of multiple tissues from this species in order to investigate the biosynthetic genes required for producing ginsenoside.
Project description:The total RNA were extracted from tissues of roots from several plants of Panax notoginseng under CK and Cd stress treatment by using TRIzol reagent (Invitrogen) according to the manufacturer's instructions. The purified PCR product was sequenced using Illumina Genome Analyzer II. The qualified reads were used to study of Panax notoginseng transcriptome under CK and Cd stress treatment.
Project description:Recent results demonstrated that either non-coding or coding genes generate phased secondary small interfering RNAs (phasiRNAs) guided by specific miRNAs. Till now, there is no studies for phasiRNAs in Panax notoginseng (Burk.) F.H. Chen (P. notoginseng), an important traditional Chinese herbal medicinal plant species. Here we performed a genome-wide discovery of phasiRNAs and its host PHAS loci in P. notoginseng by analyzing small RNA sequencing profiles. Degradome sequencing profile was used to identify the trigger miRNAs of these phasiRNAs and potential targets of phasiRNAs. We also used RLM 5'-RACE to validate some of the identified phasiRNA targets. After analyzing 24 small RNA sequencing profiles of P. notoginseng, 204 and 90 PHAS loci that encoded 21 and 24 nucleotide (nt) phasiRNAs were identified. Furthermore, we found that phasiRNAs produced from some pentatricopeptide repeat-contain (PPR) genes target another layer of PPR genes as validated by both the degradome sequencing profile and RLM 5'-RACE analysis. We also find that miR171 with 21 nt triggers the 21 nt phasiRNAs from its conserved targets. We validated that some phasiRNAs generated from PPRs are functional by targeting other PPRs in trans. These results provide the first set of PHAS loci and phasiRNAs in P. notoginseng, and enhance our understanding of PHAS in plants.
Project description:Methods: Panax notoginseng was used to treat MCAO model rats, and the differentially expressed genes between Panax notoginseng group and model group were identified by RNA SEQ, and the possible mechanism of Panax notoginseng in regulating ischemic stroke was analyzed