Project description:A silencing signal in plants with an RNA specificity determinant moves through plasmodesmata and the phloem. To identify the mobile RNA we grafted Arabidopsis thaliana shoots to roots that would be a recipient for the silencing signal. Using high throughput sequencing as a sensitive detection method and mutants to block small RNA (sRNA) biogenesis in either source or recipient tissue, we detected endogenous and transgene specific sRNA that moved across the graft union. Surprisingly we found that the mobile endogenous sRNAs account for a substantial proportion of the sRNA in roots and we provide evidence that 24nt mobile sRNAs direct epigenetic modifications in the genome of the recipient cells. Mobile sRNA thus represents a mechanism for transmitting the specification of epigenetic modification and could affect genome defence and responses to external stimuli that have persistent effects in plants. Keywords: Small RNA Analysis, Epigenetics
Project description:gene profiling in silencing suppressor plants or in mirna mutants-Transcriptional and post-transcriptional changes in Arabidopsis plants that constitutively express suppressors of RNA silencing
Project description:Expression profiling in silencing suppressor plants or in mirna mutants-Transcriptional and post-transcriptional changes in Arabidopsis plants that constitutively express suppressors of RNA silencing
Project description:Using a crucifer-infecting strain of Tobacco Mosaic Virus (TMV-Cg) and Arabidopsis thaliana as a model system, we analyzed the viral small RNA profile in wild-type plants as well as rdr mutants by applying small RNA deep sequencing technology. Over 100,000 TMV-Cg-specific small RNA reads, mostly of 21- (78.4%) and 22-nucleotide (12.9%) in size and originating predominately (79.9%) from the genomic sense RNA strand, were captured at an early infection stage, yielding the first high-resolution small RNA map for a plant virus. The TMV-Cg genome harbored multiple, highly reproducible small RNA-generating hot spots that corresponded to regions with no apparent local hairpin-forming capacity. Significantly, both the rdr1 and rdr6 mutants exhibited globally reduced levels of viral small RNA production as well as reduced strand bias in viral small RNA population, revealing an important role for these host RDRs in viral siRNA biogenesis. In addition, an informatics analysis showed that a large set of host genes could be potentially targeted by TMV-Cg-derived siRNAs for posttranscriptional silencing, raising the interesting possibility for a hidden layer of widespread virus-host interactions that may contribute to viral pathogenicity and host specificity.