Project description:BACKGROUND:Understanding the mechanisms underlying biological phenomena, such as evolutionarily conservative trait inheritance, is predicated on knowledge of the natural relationships among organisms. However, despite their enormous ecological significance, many of the ubiquitous soil inhabiting and plant symbiotic arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are incorrectly classified. METHODOLOGY/PRINCIPAL FINDINGS:Here, we focused on a frequently used model AMF registered as culture BEG47. This fungus is a descendent of the ex-type culture-lineage of Glomus epigaeum, which in 1983 was synonymised with Glomus versiforme. It has since then been used as 'G. versiforme BEG47'. We show by morphological comparisons, based on type material, collected 1860-61, of G. versiforme and on type material and living ex-type cultures of G. epigaeum, that these two AMF species cannot be conspecific, and by molecular phylogenetics that BEG47 is a member of the genus Diversispora. CONCLUSIONS:This study highlights that experimental works published during the last >25 years on an AMF named 'G. versiforme' or 'BEG47' refer to D. epigaea, a species that is actually evolutionarily separated by hundreds of millions of years from all members of the genera in the Glomerales and thus from most other commonly used AMF 'laboratory strains'. Detailed redescriptions substantiate the renaming of G. epigaeum (BEG47) as D. epigaea, positioning it systematically in the order Diversisporales, thus enabling an evolutionary understanding of genetical, physiological, and ecological traits, relative to those of other AMF. Diversispora epigaea is widely cultured as a laboratory strain of AMF, whereas G. versiforme appears not to have been cultured nor found in the field since its original description.
Project description:BackgroundPhylogenetic studies, particularly those based on rDNA sequences from plant roots and basidiomata, have revealed a strikingly high genetic diversity in the Sebacinales. However, the factors determining this genetic diversity at higher and lower taxonomic levels within this order are still unknown. In this study, we analysed patterns of genetic variation within two morphological species, Sebacina epigaea and S. incrustans, based on 340 DNA haplotype sequences of independent genetic markers from the nuclear (ITS + 5.8S + D1/D2, RPB2) and mitochondrial (ATP6) genomes for 98 population samples. By characterising the genetic population structure within these species, we provide insights into species boundaries and the possible factors responsible for genetic diversity at a regional geographic scale.ResultsWe found that recombination events are relatively common between natural populations within Sebacina epigaea and S. incrustans, and play a significant role in generating intraspecific genetic diversity. Furthermore, we also found that RPB2 and ATP6 genes display higher levels of intraspecific synonymous polymorphism. Phylogenetic and demographic analyses based on nuclear and mitochondrial loci revealed three distinct phylogenetic lineages within of each of the morphospecies S. epigaea and S. incrustans: one major and widely distributed lineage, and two geographically restricted lineages, respectively. We found almost no differential morphological or ecological characteristics that could be used to discriminate between these lineages.ConclusionsOur results suggest that recombination and negative selection have played significant roles in generating genetic diversity within these morphological species at small geographical scales. Concordance between gene genealogies identified lineages/cryptic species that have evolved independently for a relatively long period of time. These putative species were not associated with geographic provenance, geographic barrier, host preference or distinct phenotypic innovations.
Project description:Background/objectivesStephania epigaea is a plant from the Menispermaceae family. Its root is an important traditional folk medicine, which is called Diburong in China. Diburong is rich in benzylisoquinoline alkaloids (BIAs), including cepharanthine, which has been demonstrated to exhibit significant anti-inflammatory, antiviral, antineoplastic, and anti-SARS-CoV-2 activities, as well as raising leukocytes. Cepharanthine is composed of (R)- and (S)-1-benzylisoquinoline alkaloid (1-BIA). (S)-norcoclaurine-6-O-methyltransferase (6OMT) is a rate-limiting enzyme in BIA biosynthesis. However, its role in the cepharanthine biosynthetic pathway, particularly with the (R) stereoisomer substrate, remains largely unexplored. This study aimed to identify Se6OMTs involved in the cepharanthine biosynthetic pathway and elucidate the O-methyltransferases (OMTs) responsible for the production of (R)- and (S)-stereoisomer BIAs.MethodsIn this study, three OMTs were cloned from S. epigaea and functionally characterized using nine 1-BIAs of (R)- and (S)-configurations as substrates.ResultsTwo O-methyltransferases, Se6OMT1 and Se6OMT3, showed efficient catalytic activity at the C6 position of both (R)- and (S)-norcoclaurine. Furthermore, Se6OMT3 demonstrated high catalytic activity at the C7 and C4' positions of other (R)- and (S)-configuration 1-BIAs, which resulted in the generation of multiple products.ConclusionsThis study focused on 6OMT enzymes in S. epigaea, identifying Se6OMTs involved in the cepharanthine biosynthetic pathway, determining the OMTs involved in the production of (R)- and (S)-stereoisomer BIAs. This research provides valuable insights into the substrate promiscuity of Se6OMTs on (R)- and (S)-configured 1-BIAs in S. epigaea and highlights the genetic components necessary for the metabolic engineering and synthetic biology approaches to cepharanthine production.