Project description:Whole-Genome Sequences of Streptococcus alactolyticus Strain An1F4 and Escherichia coli Strains Ae3A3 and Ae3B3, Isolated from Feces of Domestic Pigs
Project description:Strain-specific probiotics can present antioxidant activity and reduce damage caused by oxidation. Streptococcus alactolyticus strain FGM (S. alactolyticus strain FGM) isolated from the chicken cecum shows potential probiotic properties which have been previously demonstrated. However, the antioxidant properties of S. alactolyticus strain FGM remain unknown. In this view, cell-free supernatant (CFS), intact cells (IC) and intracellular extracts (CFE) of strain FGM and 3 strains of Lactobacillus (LAB) were prepared, and their scavenging capacities against DPPH, hydroxyl radicals and linoleic acid peroxidation inhibitory were compared in this study. The effects of strain FGM cell-free supernatant (FCFS) on NO production, activity of SOD and GSH-Px in RAW264.7 cells and LPS-induced RAW264.7 cells were analyzed. The metabolites in the supernatant were quantitated by N300 Quantitative Metabolome. It was shown that the physicochemical characteristics of CFS to scavenge DPPH, hydroxyl radicals, and linoleic acid peroxidation inhibitory were significantly stronger than that of IC and CFE in the strain FGM (P < 0.05), respectively 87.12% ± 1.62, 45.03% ± 1.27, 15.63% ± 1.34. FCFS had a promotional effect on RAW264.7 cells, and significantly elevated SOD and GSH-Px activities in RAW264.7 cells. 25 μL FCFS significantly promoted the proliferation of RAW264.7 cells induced by LPS, increased the activities of SOD and GSH-PX, and decreased the release of NO. Furthermore, among the differential metabolites of FCFS quantified by N300, 12 metabolites were significantly up-regulated, including lactic acid, indole lactic acid, linoleic acid, pyruvic acid etc., many of which are known with antioxidant properties. In conclusion, FCFS had good antioxidant properties and activity, which can be attributed to metabolites produced from strain FGM fermentation. It was further confirmed that S. alactolyticus strain FGM and its postbiotic have potential probiotic properties and bright application prospects in livestock and poultry breeding.
Project description:Chain elongation is emerging as a bioprocess to produce valuable medium-chain fatty acids (MCFA; 6 to 8 carbons in length) from organic waste streams by harnessing the metabolism of anaerobic microbiomes. Although our understanding of chain elongation physiology is still evolving, the reverse β-oxidation pathway has been identified as a key metabolic function to elongate the intermediate products of fermentation to MCFA. Here, we describe two uncultured chain-elongating microorganisms that were enriched in an anaerobic microbiome transforming the residues from a lignocellulosic biorefining process. Based on a multi-omic analysis, we describe "Candidatus Weimeria bifida" gen. nov., sp. nov., and "Candidatus Pseudoramibacter fermentans" sp. nov., both predicted to produce MCFA but using different substrates. The analysis of a time series metatranscriptomic data set suggests that "Ca Weimeria bifida" is an effective xylose utilizer since both the pentose phosphate pathway and the bifid shunt are active. Furthermore, the metatranscriptomic data suggest that energy conservation during MCFA production in this organism is essential and occurs via the creation of an ion motive force using both the RNF complex and an energy-conserving hydrogenase. For "Ca Pseudoramibacter fermentans," predicted to produce MCFA from lactate, the metatranscriptomic analysis reveals the activity of an electron-confurcating lactate dehydrogenase, energy conservation via the RNF complex, H2 production for redox balance, and glycerol utilization. A thermodynamic analysis also suggests the possibility of glycerol being a substrate for MCFA production by "Ca Pseudoramibacter fermentans." In total, this work reveals unknown characteristics of MCFA production in two novel organisms.IMPORTANCE Chain elongation by medium-chain fatty acid (MCFA)-producing microbiomes offers an opportunity to produce valuable chemicals from organic streams that would otherwise be considered waste. However, the physiology and energetics of chain elongation are only beginning to be studied, and many of these organisms remain uncultured. We analyzed MCFA production by two uncultured organisms that were identified as the main MCFA producers in a microbial community enriched from an anaerobic digester; this characterization, which is based on meta-multi-omic analysis, complements the knowledge that has been acquired from pure-culture studies. The analysis revealed previously unreported features of the metabolism of MCFA-producing organisms.