Project description:Here, we report the draft genome sequence of Salmonella enterica subsp. diarizonae serovar 61:k:1,5,(7) strain 1569, alternatively named 14PM0011, which is a common serovar in German sheep that is unrepresented in the databases and considered and described as being host adapted with low virulence.
Project description:A collection of 61 Salmonella enterica serovar Typhimurium (S. Typhimurium) of animal and human origin, matched as closely as possible by phage type, antimicrobial resistance pattern and place / time of isolation, and sourced from farms or hospitals in Scotland, were analysed by antimicrobial susceptibility testing, phage typing, pulsed field gel electrophoresis (PFGE), plasmid profiling and DNA microarrays. PFGE of all 61 isolates revealed ten PFGE profiles, which clustered by phage type and antibiotic resistance pattern, with human and animal isolates distributed between PFGE profiles. Analysis of 23 representative S. Typhimurium strains hybridised to a composite Salmonella DNA microarray identified a small number of specific regions of genome variation between different phage types and PFGE profiles. These variable regions of DNA were typically located within prophage-like elements. Simple PCR assays were subsequently designed to discriminate between different isolates from the same geographical region.
Project description:Salmonella enterica subsp. diarizonae serovar 61:k:1,5,(7) is commonly associated with sheep. Occasionally, the serovar has been found to also infect humans. Here, we report the complete genome sequence of strain 14-SA00836-0, isolated from human urine. To our knowledge, this is the first reported complete genome sequence of this serovar isolated from a human clinical sample.
Project description:Our previous studies identified an increase in the levels of the metabolite 1,5-anhydroglucitol (1,5-AG) in the plasma of patients with newly diagnosed B-ALL by untargeted metabolomics detection.Except for the direct influence of 1,5-AG on leukemia cells, the effect on macrophages is still unclear.We reported the application of RNA sequencing to determine the transcriptional response of murine macrophage Raw 264.7 cells in response to stimulate with 1,5-AG conditions.