Project description:Breast cancer is a molecularly, biologically and clinically heterogeneous group of disorders. Understanding this diversity is essential to improving diagnosis and optimising treatment. Both genetic and acquired epigenetic abnormalities participate in cancer, but information is scant on the involvement of the epigenome in breast cancer and its contribution to the complexity of the disease. Here we used the Infinium Methylation Platform to profile at single-CpG resolution (over 14,000 genes interrogated) the methylomes of 119 breast tumours. It emerges that many genes whose expression is linked to the ER status are epigenetically controlled (or/ we show that the two major phenotypes of breast cancers determined by ER status are widely involving epigenetic regulatory mechanisms), offering the prospect of a novel approach to treating ER-positive tumours. We have distinguished methylation-profile-based tumour clusters, some coinciding with known “expression subtypes” but also new entities that may provide a meaningful basis for refining breast tumour typology. We show that methylation patterns may reflect the cellular origins of tumours. Having highlighted an unexpectedly strong epigenetic component in the regulation of key immune pathways, we show that a set of immune genes have high prognostic value in specific tumour categories. By laying the ground for better understanding of breast cancer heterogeneity and improved tumour taxonomy, the precise epigenetic portraits drawn here should contribute to better management of breast cancer patients. 6 methylation profiling of HCT116 cell lines. Study of epigenetic variation (methylation) linked to gene expression. No replicate, no reference sample.
Project description:Breast cancer is a molecularly, biologically and clinically heterogeneous group of disorders. Understanding this diversity is essential to improving diagnosis and optimising treatment. Both genetic and acquired epigenetic abnormalities participate in cancer, but information is scant on the involvement of the epigenome in breast cancer and its contribution to the complexity of the disease. Here we used the Infinium Methylation Platform to profile at single-CpG resolution (over 14,000 genes interrogated) the methylomes of 119 breast tumours. It emerges that many genes whose expression is linked to the ER status are epigenetically controlled (or/ we show that the two major phenotypes of breast cancers determined by ER status are widely involving epigenetic regulatory mechanisms), offering the prospect of a novel approach to treating ER-positive tumours. We have distinguished methylation-profile-based tumour clusters, some coinciding with known “expression subtypes” but also new entities that may provide a meaningful basis for refining breast tumour typology. We show that methylation patterns may reflect the cellular origins of tumours. Having highlighted an unexpectedly strong epigenetic component in the regulation of key immune pathways, we show that a set of immune genes have high prognostic value in specific tumour categories. By laying the ground for better understanding of breast cancer heterogeneity and improved tumour taxonomy, the precise epigenetic portraits drawn here should contribute to better management of breast cancer patients.
Project description:MiRNAs are small non-coding RNAs that regulate the expression of specific mRNA targets mainly by translational repression, mRNA deadenylation or cleavage. This series is meant to identify miRNAs deregulated in prostate cancer (PCa) by comparing the PCa cell lines LNCaP, PC3 and Du-145 to the normal prostate epithelial cell line RWPE-1.
Project description:MiRNAs are small non-coding RNAs that regulate the expression of specific mRNA targets mainly by translational repression, mRNA deadenylation or cleavage. This series is meant to identify miRNAs deregulated in prostate cancer (PCa) by comparing the PCa cell lines LNCaP, PC3 and Du-145 to the normal prostate epithelial cell line RWPE-1. We analyzed three arrays each for LNCaP, PC3, Du-145 and RWPE-1 cell lines
Project description:RAD21 ChIA-PET in human DU 145 cells For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODE_Data_Use_Policy_for_External_Users_03-07-14.pdf