Project description:Between 2014 and 2019, unexpected mortalities were observed in a colony of Dryococelus australis, an endangered stick-insect kept at the Melbourne Zoo for a breeding and conservation program. Pure cultures of Serratia spp. were obtained from the haemolymph of moribund and recently deceased individuals. The combined bacteriological and histopathological observations suggested an infectious cause of these mortalities. Genotyping of Serratia sp. isolated from the insects and their environment revealed a predominant strain profile. A representative isolate, AM923, was entirely sequenced and compared to 616 publicly available Serratia spp. genomes, including 37 associated with insects. The genomes were distributed into 3 distinct groups, with 63% of the insect-associated isolates within a single clade (clade A) containing AM923, separated from most environmental/plant-associated strains (clade B) and human isolates (clade C). Average nucleotide identity and phylogenetic analyses identified AM923 as S. ureilytica and revealed similarities with putatively entomopathogenic strains. An experimental infection model in honey bees (Apis mellifera) confirmed the pathogenic potential of AM923. A urease operon was found in most insect isolates and a PCR assay, based on the ureB gene sequence, was used to confirm the presence of AM923 in experimentally infected bees. This species-specific PCR could be applied to detect entomopathogenic Serratia spp. in infected insects or their environment.
Project description:(1) Background: We determined the relevance of intestinal dominance by Serratia spp. during a neonatal outbreak over 13 weeks. (2) Methods: Rectal swabs (n = 110) were obtained from 42 neonates. Serratia spp. was cultured from swabs obtained from 13 neonates (Group 1), while the other 29 neonates were culture-negative (Group 2). Total DNA was extracted from rectal swabs, and quantitative PCRs (qPCRs) using Serratia- and 16SrRNA-gene-specific primers were performed. relative intestinal loads (RLs) were determined using ΔΔCt. Clonality was investigated by random amplified polymorphic DNA analysis and whole-genome sequencing. (3) Results: The outbreak was caused by Serratia marcescens during the first eight weeks and Serratia ureilytica during the remaining five weeks. Serratia spp. were detected by qPCR in all Group 1 neonates and eleven Group 2 neonates. RLs of Serratia spp. were higher in Group 1 as compared to Group 2 (6.31% vs. 0.09%, p < 0.05) and in the first swab compared to the last (26.9% vs. 4.37%, p < 0.05). Nine neonates had extraintestinal detection of Serratia spp.; eight of them were infected. RLs of the patients with extraintestinal spread were higher than the rest (2.79% vs. 0.29%, p < 0.05). (4) Conclusions: Intestinal dominance by Serratia spp. plays a role in outbreaks and extraintestinal spread.