Project description:Drought is a major limiting constraint to faba bean production worldwide, including Tunisia. However, molecular mechanisms underlying faba bean responses to drought stress are not well understood. In this context, transcriptome analysis by RNA-seq was performed to investigate drought-related genes and construct a network of faba bean drought stress response and tolerance. De novo assembly of the transcriptome generated 26,728 differentially expressed genes (DEGs). Of these, 13,920 were up-regulated and 12,808 down-regulated in faba bean drought-stressed leaves. Moreover, a total of 10,800 simple sequence repeats (SSRs) and 2130 transcription factors involved in major metabolic pathways including abscisic acid (ABA)-dependent and -independent signaling pathway were identified. GO, KOG and KEGG enrichment analyses revealed that these DEGs were involved in several important processes including photosynthesis, flavonoid biosynthesis, response to stimulus and abiotic stress, reactive oxygen species (ROS) scavengers, signal transduction, biosynthesis of secondary metabolites and transporters, suggesting the involvement of these important pathways in faba bean response to water deficit. Various stress proteins such as late embryogenesis abundant proteins (LEA), dehydrins (DHNs) and heat shock proteins (HSPs) have been identified and their expression was robustly upregulated in drought-stressed leaves, indicating their key contribution to drought response and adaptation by conferring protection and providing stability to faba bean plant cellular processes under water deficit. The reliability of the RNA-seq results was confirmed by the analysis of 10 randomly selected genes using qRT-PCR. Taken together, these findings help advancing our knowledge and can guide breeding programs aimed at improving the tolerance of faba bean to drought stress.
Project description:Effect of High Temperature on Immune Response of Grass Carp (Ctenopharyngodon idellus) by Transcriptome Analysis To understand the immune response mechanisms of this fish in high temperature circumstance, the transcriptomic profiles of the spleens from grass carp groups undergoing heat stress and normal temperature were investigated.
Project description:Purpose:Salinity is an important environmental factor that affects the physiological activities of fish. The goals of this study are investigating the effect of different saline-alkali stress on grass carp (Ctenopharyngodon idella). Methods: Grass carp individuals, averaging 12 cm in body length, were obtained from Duofu fish farm (Wuhan, China) and cultured at recirculating aquaculture system for 2 weeks before the experiment began. For the challenge, all grass carp were randomly divided into three groups, and then cultured at saline-alkali water with the concentration of 0, 3‰ and 6‰. After 30 days, some grass crap cultured at 3‰ and 6‰ saline-alkali water were injured. At the same time, gill samples of grass carp were collected from 0, 3‰ (grass carp was not injured), 3‰ (grass carp was injured), 6‰ (grass carp was not injured) and 6‰ (grass carp was injured)saline-alkali groups. Total RNA of all samples was isolated using TRIzol® Reagent (Invitrogen) according to the manufacturer's introduction. RNA integrity was assessed using an Agilent 2100 bioanalyzer (Agilent, USA). Samples with RNA integrity numbers (RINs) ≥ 7.5 were subjected to cDNA library construction using TruseqTM RNA sample prep Kit (Illumina). Results:A total of 15 were processed for transcriptome sequencing, generating 94.99Gb Clean Data. At least 5.76Gb clean data were generated for each sample with minimum 91.87% of clean data achieved quality score of Q30. Clean reads of each sample were mapped to specified reference genome. Mapping ratio ranged from 88.59% to 92.84%. The expression of genes was quantified and differentially expressed genes were identified based on their expression.Criteria for differentially expressed genes was set as Fold Change(FC)≥1.5 and Pvalue<0.05. Fold change(FC) refers to the ratio of gene expression in two samples. These DEGs were further processed for functional annotation and enrichment analysis. Conclusions: Our study represents Effects and molecular regulation mechanisms of saline-alkali stress on the healthy grass carp by using RNA-seqtechnology. Our results show that saline-alkali stress will impair the immune system of grass carp.
Project description:Grass carp (Ctenopharyngodon idellus), the world’s largest aquaculture fish species, exhibits superior growth in females compared to males. However, the lengthy sexual maturation period of four to five years poses a significant obstacle to the genetic reproduction and breeding of grass carp. Consequently, classical methods such as gonadogenesis or sex reversal through steroid treatment, employed for breeding all-female grass carp, demand considerable time and effort. In this study, we developed an super-fast breeding strategy for generating all-female grass carp in a total of half a year, using a surrogate production method. We first characterized grass carp female germline stem cells (GSCs) from genetic female juveniles at three months post-fertilization (mpf). The female GSCs with XX chromosomes were then transplanted into germ cell-depleted zebrafish larvae at five days post-fertilization (dpf). The transplanted grass carp XX germ cells underwent rapid spermatogenesis in the zebrafish recipient. At three months after transplantation, all zebrafish recipients had developed into males capable of producing the all-X sperm of the grass carp. By using these sperm to fertilize wildtype grass carp eggs, we successfully produced an all-female grass carp offspring. This groundbreaking achievement highlights the potential of surrogate production in the genetic breeding of valuable fish species, and opens a new avenue for advancing genetic breeding in aquaculture.
Project description:Beef represents a major diet component and source of protein in many countries. With an increment demand for beef, the industry is currently undergoing changes towards natural produced beef. Consumers not only concern about product quality, but also for the well-being of animals. Therefore, the consumption of grass-fed meat is continuously growing. However, the nutritional true differences between feeding systems are still unclear. The aim of this study was to examine latissimus dorsi muscle quality and animal welfare by transcriptome and metabolome profiles, and to identify biological pathways related to the differences between grass- and grain-fed Angus steers. By RNA-Seq analysis of latissimus dorsi muscle, we have recognized 241 differentially expressed genes (FDR < 0.1). The metabolome examination of muscle and blood revealed 163 and 179 altered compounds in each tissue (P-value < 0.05), respectively. Accordingly, alterations in glucose metabolism, divergences in free fatty acids and carnitine conjugated lipid levels, and altered β-oxidation, have been observed. In summary, this study demonstrates a unique transcriptomic and metabolic signature in the muscle of grain and grass finished cattle. Results support the accumulation of anti-inflammatory n3 polyunsaturated fatty acids in grass finished cattle, while higher levels of n6 PUFAs in grain finished animals may promote inflammation and oxidative stress. Furthermore, grass-fed animals produce tender beef with lower total fat and higher omega3/omega6 ratio than grain fed animals, which could potentially benefit consumer health. Finally, blood cortisol levels strongly indicate that grass fed animals experience less stress than the grass fed individuals
Project description:It is well established that histone derived antimicrobial peptides (AMPs) have anti-microbial properties in various invertebrate and vertebrate species.To reveal the possible immunoregulatory functions of the engineered S. cerevisiae expressing gcH2A-4(7t) and gcH2A-11(2t) on the grass carp, the intestines from the immunized grass carp were collected at the first immunization for 7 days and used for transcriptome sequencing. The results found that the activation of PRRs-related pathways including TLRs, NLRs and RLRs was revealed in the engineered S. cerevisiae expressing gcH2A-4(7t) and gcH2A-11(2t) on the grass carp intestines."