Project description:Sudden death syndrome (SDS) is caused by the ascomycete fungus, Fusarium virguliforme. The pathogen secretes one or more toxins into the infected soybean roots to cause foliar SDS. This study investigated if the xylem sap of F. virguliforme-infected soybean plants contains secreted F. virguliforme-proteins, some of which could be involved in foliar SDS development.
Project description:Many of the microorganisms that are normally present in the soil, actually inhabit the rhizosphere and interact with plants. Those plant–microorganisms interactions may be beneficial or harmful. Among the first are the arbuscular mycorrhizal fungi (AMF). These soil fungi have been reported to improve plant resistance/tolerance to pests and diseases. On the other hand, soilborne pathogens represent a threat to agriculture generating important yield losses, depending upon the pathogen and the crop. One example is the “Sudden Death Syndrome” (SDS), a severe disease in soybean (Glycine max (L.) Merr) caused by a complex of at least four species of Fusarium sp., among which Fusarium virguliforme and F. tuccumaniae are the most prevalent in Argentina. This study provides, under strict in vitro culture conditions, a global analysis of transcript modifications in mycorrhizal and non-mycorrhizal soybean root associated with F. virguliforme inoculation. Microarray results showed qualitative and quantitative changes in the expression of defense-related genes in mycorrhizal soybean, suggesting that AMF are good candidates for sustainable plant protection against F. virguliforme.