Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:We applied metagenomic shotgun sequencing to investigate the effects of ZEA exposure on the change of mouse gut microbiota composition and function.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:Nitrate-reducing iron(II)-oxidizing (NDFO) bacteria are widespread in the environment contribute to nitrate removal and influence the fate of the greenhouse gases nitrous oxide and carbon dioxide. The autotrophic growth of nitrate-reducing iron(II)-oxidizing bacteria is rarely investigated and poorly understood. The most prominent model system for this type of studies is enrichment culture KS, which originates from a freshwater sediment in Bremen, Germany. A second NDFO culture, culture BP, was obtained with a sample taken in 2015 at the same pond and cultured in a similar way. To gain insights in the metabolism of nitrate reduction coupled to iron(II) oxidation under in the absence of organic carbon and oxygen limited conditions, we performed metagenomic, metatranscriptomic and metaproteomic analyses of culture BP. Raw sequencing data of 16S rRNA amplicon sequencing (V4 region with Illumina and near full-length with PacBio), shotgun metagenomics, metagenome assembly, raw sequencing data of shotgun metatranscriptomes (2 conditions, triplicates) can be found at SRA in https://www.ncbi.nlm.nih.gov/bioproject/PRJNA693457. This dataset contains proteomics data for 2 conditions in triplicates. Samples R23, R24, and R25 are grown in autotrophic conditions, samples R26, R27, and R28 in heterotrophic conditions.
Project description:World aquaculture production of the Pacific white shrimp (Litopenaeus vannamei) is estimated to account for 80% of the total shrimp produce worldwide. The global demand for shrimp has driven the industry to utilize and rely on semi-intensive and intensive shrimp systems. In the United States, Pacific white shrimp production can take place in semi-intensive earthen ponds, recirculating aquaculture systems (RAS), biofloc technology and green water. In this study, the effects of lowering dissolved oxygen conditions in outdoor green water tanks on global gene expression is examined. Tissue samples from the gill and intestine were collected for gene expression analysis via RNA sequencing. Among all comparisons, RNA sequencing revealed the up-regulation of a single gene: hydroxyacid oxidase 1 gene. The HOA1 gene was found to be 7-fold higher in the intestine sample at the medium aeration level compare to that of the high (control) level. The HAO1 gene, also known as glycolate oxidase 1 (GOX1) is a gene related to the 2-hydroxyacid oxidase enzyme that is part of the oxidoreductase family and plays a role in glyoxylate and dicarboxylate metabolism. The identification of a single differentially expressed gene across all analyzed samples suggests that Pacific white shrimp exposed to lowering dissolved oxygen set points does not induce global changes in gene expression at these levels.
2025-07-17 | GSE281217 | GEO
Project description:Metagenomic shotgun sequencing of water samples
Project description:Pseudomonas aeruginosa is a common bacterium in the terminal plumbing system of buildings and it is from this niche that a substantial fraction of infections are acquired. To better understand P. aeruginosa biology in this environment, we examined the transcriptomes in tap water and pond water.
Project description:Wastewater treatment plants (WWTPs) and Drinking water treatment plants (DWTPs) are critical points for public health for persistently remaining microorganisms after treatment may pose a risk. This study aimed to conduct microbial metagenomic analyses on waters from both DWTPs and WWTPs under the Istanbul Water and Sewerage Administration (ISKI). In this study a total of 52 samples were included, comprising 18 samples from DWTPs and 34 from WWTPs. All water samples underwent pre-isolation filtration. DNA isolation was conducted using filter material, followed by library preparation and sequencing on a NovaSeq 6000 instrument following the manufacturer's guidelines.
Project description:The gut microbiota plays an important role in host health. Microbiota dysbiosis has been implicated in the global epidemic of Metabolic Syndrome (MetS) and could impair host metabolism by noxious metabolites. It has been well established that the gut microbiota is shaped by host immune factors. However, the effect of T cells on the gut microbiota is yet unknown. Here, we performed a metagenomic whole-genome shotgun sequencing (mWGS) study of the microbiota of TCRb-/- mice, which lack alpha/beta T cells.
2024-05-06 | GSE262397 | GEO
Project description:16S metagenomics of shrimp gut and pond water