Project description:We used phylogenetic low-density microarrays targeting the 16S rRNA gene to characterize the gingival flora of acute noma and acute necrotizing gingivitis lesions, and compared them to healthy control subjects of the same geographical and social background. Various types of samples were collected (column characteristics); patients from the same hospital without mouth infection (H), matched control populations (T), patients suffering gengivitis (Gengivitis), patient suffering NOMA (noma), patient suffering NOMA receiving antimicrobials (N-ATB). Sampled from patients were retrieved from both sides (column Description); healthy- or lesion-side of the mouth. All controls are matched with specific patients (see column patient category and number) We designed low-density 16S rDNA arrays representing 339 different phylotypes. We used an arbitrary cutoff of 1% of overall abundance to select from this dataset the most abundant sequences for probe design. Using this cutoff, the 132 most abundant 16S rRNA gene sequences were scanned for probes respecting defined physico-chemical properties (Tm = 65M-BM-15M-BM-0C; probe length = 23M-bM-^@M-^S50 nt; < -5.0 kcal/mol for hairpins; < -8.0 kcal/mol for self-dimers; and dinucleotide repeats shorter than 5 bp) using a commercial software (Array Designer TM 2.0 by Premier Biosoft). The 335 oligonucleotide probes were synthesized with a C6-linker with free primary amine (Sigma-Aldrich) and spotted on ArrayStrips microarrays (Clondiag GmbH, Jena, Germany).
Project description:We used phylogenetic low-density microarrays targeting the 16S rRNA gene to characterize the gingival flora of acute noma and acute necrotizing gingivitis lesions, and compared them to healthy control subjects of the same geographical and social background. Various types of samples were collected (column characteristics); patients from the same hospital without mouth infection (H), matched control populations (T), patients suffering gengivitis (Gengivitis), patient suffering NOMA (noma), patient suffering NOMA receiving antimicrobials (N-ATB). Sampled from patients were retrieved from both sides (column Description); healthy- or lesion-side of the mouth. All controls are matched with specific patients (see column patient category and number)
2013-12-27 | GSE43612 | GEO
Project description:16S rRNA sequencing of mice stools
Project description:Primary outcome(s): Analysis of the diversity and composition of the gut microbiome by 16S rRNA sequencing
Study Design: Observational Study Model : Others, Time Perspective : Prospective, Enrollment : 60, Biospecimen Retention : Collect & Archive- Sample with DNA, Biospecimen Description : Blood, Stool
Project description:Gut microbiota were assessed in 540 colonoscopy-screened adults by 16S rRNA gene sequencing of stool samples. Investigators compared gut microbiota diversity, overall composition, and normalized taxon abundance among these groups.
| 2255499 | ecrin-mdr-crc
Project description:16S rRNA sequencing of colorectal cancer
Project description:Mitochondrial rRNAs play important roles in regulating mtDNA-encoded gene expression and energy metabolism subsequently. However, the proteins that regulate mitochondrial 16S rRNA processing remain poorly understood. Herein, we generated adipose-specific Wbscr16-/- mice and cells, both of which exhibited dramatic mitochondrial changes. Subsequently, WBSCR16 was identified as a 16S rRNA-binding protein essential for the cleavage of 16S rRNA-mt-tRNALeu, facilitating 16S rRNA processing and mitochondrial ribosome assembly. Additionally, WBSCR16 recruited RNase P subunit MRPP3 to nascent 16S rRNA and assisted in this specific cleavage. Furthermore, evidence showed that adipose-specific Wbscr16 ablation promotes energy wasting via lipid preference in brown adipose tissue, leading to excess energy expenditure and resistance to obesity. In contrast, overexpression of WBSCR16 upregulated 16S rRNA processing and induced a preference for glucose utilization in both transgenic mouse models and cultured cells. These findings suggest that WBSCR16 plays essential roles in mitochondrial 16S rRNA processing in mammals, and is the key mitochondrial protein to balance glucose and lipid metabolism.