Project description:Sustainable production of switchgrass (Panicum virgatum) as a bioenergy crop hinges in part on efficient use of soil macronutrients, especially nitrogen (N). This study investigated the physiological, metabolic and transcriptomic responses of switchgrass to N limitation. Moderate N limitation marked a tipping point for large changes in plant growth, root-to-shoot ratio, root system architecture and total nitrogen content. Integration of transcriptomic and metabolic data revealed that N limitation reduced switchgrass photosynthetic capacity and carbon(C)-fixation activities. Switchgrass balanced C-fixation with N-assimilation, transport and recycling of N compounds by rerouting C-flux from glycolysis, the oxidative branch of the pentose phosphate pathway (OPPP) and from the tricarboxylic acid (TCA) cycle in an organ specific manner. The energy and reduction power so generated, and C-skeletons appear to be directed towards N uptake, biosynthesis of energy storage compounds with high C/N ratio such as sucrose, non-N-containing lipids, and various branches of secondary metabolism.
Project description:Endophytic fungi are root-inhabiting fungi that can promote plant growth in a variety of ways. They can directly stimulate plant growth by producing phytohormones, such as auxin and gibberellins. They can also indirectly promote plant growth by helping plants to acquire nutrients, such as nitrogen and phosphorus, and by protecting plants from pests and pathogens.In this study, we used a proteomic approach to identify the proteins that are expressed in rice plants after they are treated with endophytic fungi. We found that the treatment with endophytic fungi resulted in the expression of a number of proteins involved in plant growth, nutrient acquisition, and defense. These results suggest that endophytic fungi can promote plant growth and improve plant resilience to stress.