Project description:To investigate the large-scale gene expression in different tea clones, a custom oligo microarray was developed using sequences from RNA-seq for probe designing. We succeeded in developing a tea oligo microarray resource which can be successfully used to analyze gene expression in any tea clones without the need for prior sequence knowlege.
Project description:Purpose: We investigated root foraging strategies for K of tea plants using a multi-layer split-root system by RNA-seq. Methods: One-year old tea cuttings were cultivated with the roots evenly planted on the two sides of the split root hydroponic box with a root canal. Three treatments were included to simulate the heterogeneous and homogeneous K environments. After 5d treatment, the roots on the two sides of the split root hydroponic box were collected separately and the RNA sequencing were analyzed by the Illumina Hiseq (2500, Illumina, San Diego, CA). Results: RNA-seq data had a linear relationship with qRT–PCR (r2=0.76), which confirmed the reliability of the RNA-seq data. Conclusions: Our study screened the key genes of tea root system to adapt to potassium heterogeneity.
Project description:The RNA-Seq was used to analyze the expression profiling of genes in different ablescent stages of 'Anji Baicha' Examination of three tea leaf samples in yellow stage, white stage and green stage
Project description:TEA domain transcription factor 1 (TEAD1), a Hippo pathway transcription factor important in cellular homeostasis and development, is increasingly implicated in cancer biology. Here, we reveal a novel role for TEAD1 in organizing nuclear condensates, independent of active transcription. Using high-resolution imaging, ChIP-seq, RNA-seq and proximity-based proteomics, we demonstrate that in patient-derived renal cell carcinoma cells, TEAD1 forms micron-sized foci by binding to the heterochromatic pericentromeric regions using its DNA-binding domain. These TEAD1 foci do not mediate transcription but instead serve as depots for excess TEAD1. This contrasts with TEAD1 organization in other genomic regions of both RCC and normal kidney cells, where TEAD1 associates with markers of active transcription. Our findings provide a mechanistic framework for TEAD1’s dual regulatory roles, offering new insights into its contribution to transcriptional dysregulation and tumor progression.
Project description:Senescence is initiated immediately in harvested tea leaves, and leads to physiological and biochemical changes, and could affects the final tea products. In the present work, we investigated the relationship between hormones and critical components in harvested tea leaves before withering, changes in hormones including abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), and critical components like catechins, theanine, and caffeine were analyzed. Significant changes in these substances were identified and ABA correlated with catechin in harvested tea leaves before withering. RNA-seq transcriptome analysis revealed dramatic differences between tea samples at 1 h and 2 h compared with those at 0 h. The patterns of these three critical components correlated with the expression profiles of differentially expressed genes (DEGs). Weighted correlation network analysis of co-expressed genes revealed that genes in the mediumpurple2 module correlated with ABA and catechins. The results of this study suggest that harvested tea leaves before withering undergo significant hormonal changes (ABA, JA, and SA) and ABA may participate in regulating catechin biosynthesis.
Project description:We investigated the effect of green tea extract on phenotype characteristics and elucidated anti-obesity mechanism based on RNA-seq transcriptomic profiles in an obesity animal model.