Project description:To explore the effects of gut microbiota of young (8 weeks) or old mice (18~20 months) on stroke, feces of young (Y1-Y9) and old mice (O6-O16) were collected and analyzed by 16s rRNA sequencing. Then stroke model was established on young mouse receive feces from old mouse (DOT1-15) and young mouse receive feces from young mouse (DYT1-15). 16s rRNA sequencing were also performed for those young mice received feces from young and old mice.
Project description:The objective of the present study was to identify the nutrient utilization and the SCFA production potential of gut microbes during the first year of life. The 16S sequencing data represents 100 mother-child pairs, longitudinally for the infants (0, 3mo, 6mo and 12mo) and mothers 18 weeks pregnancy. We wanted to identify the SCFA composition in pregnant woman and their infants through the first year of life, and their correlation to gut bacteria and other influencal factors. Metaproteomics on selected infants were analyzed to look for nutrient sources used by potential SCFA producers.
Project description:The link between human gut microbiota (a complex group of microorganisms including not only bacteria but also fungi, viruses, etc.,) and the physiological state is nowadays unquestionable. Metaproteomic has emerged as a useful technique to characterize this microbial community, not just taxonomically, but also focusing on specific biological processes carried out by gut microbiota that may have an effect in the host health or pathological state. Cystic fibrosis is a genetic disease in which the microbiota of the respiratory tract determines the patient's survival and differences in composition of gut microbiota of cystic fibrosis patients respect to healthy infants have been reported. In order to characterize this host-microbiota inter-relation, we carried out the metaproteomic study of 30 stool samples from infants with cystic fibrosis.
Project description:To address the role of gut microbiota in the development of paclitaxel-induced peripheral neuropathy (PIPN), we performed 16S rRNA sequencing analysis of feces samples at 14 days and 28 days after the initiation of paclitaxel or vehicle injections.
Project description:Gut microbiota comparation of Young mice (n=10), Old mice, Young_yFMT (Young mice 14 days after transplant feces from young mice, n=10) and Young_oFMT (Young mice 14 days after transplant feces from old mice, n=10), Antibiotic group (Cefazolin, n=8).
Project description:To compare the similarities and differences in species diversity of the gut microbiota between the patients with melasma and healthy subjects. The feces were collected for 16S rRNA sequencing analysis of the gut microbiota.
Project description:Maternal secretor status is one of the determinants of human milk oligosaccharides (HMOs) composition, which in turn changes the gut microbiota composition of infants. To understand if this change in gut microbiota impacts immune cell composition, intestinal morphology and gene expression, day 21-old germ-free mice were transplanted with fecal microbiota from infants whose mothers were either secretors (SMM) or non-secretors (NSM) or from infants consuming dairy-based formula (MFM). For each group, one set of mice was supplemented with HMOs. HMO supplementation did not significantly impact the microbiota diversity however, SMM mice had higher abundance of genus Bacteroides, Bifidobacterium, and Blautia, whereas, in the NSM group, there were higher abundance of Akkermansia, Enterocloster, and Klebsiella. In MFM, gut microbiota was represented mainly by Parabacteroides, Ruminococcaceae_unclassified, and Clostrodium_sensu_stricto. In mesenteric lymph node, Foxp3+ T cells and innate lymphoid cells type 2 (ILC2) were increased in MFM mice supplemented with HMOs while in the spleen, they were increased in SMM+HMOs mice. Similarly, serum immunoglobulin A (IgA) was also elevated in MFM+HMOs group. Distinct global gene expression of the gut was observed in each microbiota group, which was enhanced with HMOs supplementation. Overall, our data shows that distinct infant gut microbiota due to maternal secretor status or consumption of dairy-based formula and HMO supplementation impacts immune cell composition, antibody response and intestinal gene expression in a mouse model.
Project description:This study aimed to analyze changes in gut microbiota composition in mice after transplantation of fecal microbiota (FMT, N = 6) from the feces of NSCLC patients by analyzing fecal content using 16S rRNA sequencing, 10 days after transplantation. Specific-pathogen-free (SPF) mice were used for each experiments (N=4) as controls.