Project description:Chemical communication is crucial in ecosystems with complex microbial assemblages. However, due to archaeal cultivation challenges, our understanding of the structure diversity and function of secondary metabolites (SMs) within archaeal communities is limited compared to the extensively studied and well-documented bacterial counterparts. Our comprehensive investigation into the biosynthetic potential of archaea, combined with metabolic analyses and the first report of heterologous expression in archaea, has unveiled the previously unexplored biosynthetic capabilities and chemical diversity of archaeal ribosomally synthesized and post-translationally modified peptide (RiPP). We have identified twenty-four new lanthipeptides of RiPPs exhibiting unique chemical characteristics, including a novel subfamily featuring an unexplored type with diamino-dicarboxylic (DADC) termini, largely expanding the chemical landscape of archaeal SMs. This sheds light on the chemical novelty of archaeal metabolites and emphasizes their potential as an untapped resource for natural product discovery. Additionally, archaeal lanthipeptides demonstrate specific antagonistic activity against haloarchaea, mediating the unique biotic interaction in the halophilic niche. Furthermore, they showcased a unique ecological role in enhancing the host's motility by inducing the rod-shaped cell morphology and upregulating the archaellum gene flgA1, facilitating the archaeal interaction with abiotic environments. These discoveries broaden our understanding of archaeal chemical language and provide promising prospects for future exploration of SM-mediated interaction.
2024-11-09 | GSE281021 | GEO
Project description:archaeal microbial diversity in soda lake deep sediment
| PRJNA695142 | ENA
Project description:Archaeal Diversity in Sediment of Two Landscape Lakes
Project description:The abundance of bacterial (AOB) and archaeal (AOA) ammonia oxidisers, assessed using quantitative PCR measurements of their respective a-subunit of the ammonia monooxygenase (amoA) genes, and ammonia oxidation rates were measured in four contrasting coastal sediments in the Western English Channel. Sediment was sampled bimonthly from July 2008 to May 2011, and measurements of ammonia oxidiser abundance and activity compared to a range of environmental variables including salinity, temperature, water column nutrients and sediment carbon and nitrogen content. Despite a higher abundance of AOA amoA genes within all sediments, and at all time-points, rates of ammonia oxidation correlated with AOB and not AOA amoA gene abundance. Other than ammonia oxidation rate, sediment particle size was the only variable that correlated with the spatial and temporal patterns of AOB amoA gene abundance, implying a preference of the AOB for larger sediment particles. This is possibly due to deeper oxygen penetration into the sandier sediments, increasing the area available for ammonia oxidation to occur, higher concentrations of inhibitory sulphide with pore waters of muddier sediments or a combination of both oxygen and sulphide concentrations. Similar to many other temporal studies of nitrification within estuarine and coastal sediments, decreases in AOB amoA gene abundance were evident during summer and autumn, with maximum abundance and ammonia oxidation rates occurring in winter and early spring. The lack of correlation between AOA amoA gene abundance and ammonium oxidation rate suggests an alternative role for amoA-carrying AOA within these sediments.
Project description:Ammonia-oxidizing archaeal (AOA) amoA diversity and relative abundance in Gulf of Mexico sediments (0-2 cm) were investigated using a functional gene microarray; a two color array with a universal internal standard
Project description:The abundance of bacterial (AOB) and archaeal (AOA) ammonia oxidisers, assessed using quantitative PCR measurements of their respective a-subunit of the ammonia monooxygenase (amoA) genes, and ammonia oxidation rates were measured in four contrasting coastal sediments in the Western English Channel. Sediment was sampled bimonthly from July 2008 to May 2011, and measurements of ammonia oxidiser abundance and activity compared to a range of environmental variables including salinity, temperature, water column nutrients and sediment carbon and nitrogen content. Despite a higher abundance of AOA amoA genes within all sediments, and at all time-points, rates of ammonia oxidation correlated with AOB and not AOA amoA gene abundance. Other than ammonia oxidation rate, sediment particle size was the only variable that correlated with the spatial and temporal patterns of AOB amoA gene abundance, implying a preference of the AOB for larger sediment particles. This is possibly due to deeper oxygen penetration into the sandier sediments, increasing the area available for ammonia oxidation to occur, higher concentrations of inhibitory sulphide with pore waters of muddier sediments or a combination of both oxygen and sulphide concentrations. Similar to many other temporal studies of nitrification within estuarine and coastal sediments, decreases in AOB amoA gene abundance were evident during summer and autumn, with maximum abundance and ammonia oxidation rates occurring in winter and early spring. The lack of correlation between AOA amoA gene abundance and ammonium oxidation rate suggests an alternative role for amoAÂ-carrying AOA within these sediments. Two color array (Cy3 and Cy5): the universal standard 20-mer oligo is printed to the slide with a 70-mer oligo (an archetype). Environmental DNA sequences (fluoresced with Cy3) within 15% of the 70-mer conjugated to a 20-mer oligo (fluoresced with Cy5) complementary to the universal standard will bind to the oligo probes on the array. Signal is the ratio of Cy3 to Cy5. Three replicate probes were printed for each archetype. Two replicate arrays were run on duplicate targets.
Project description:Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River.
Project description:Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River. Three groups of samples, A, B and C. Every group has 3 replicates.
Project description:Seagrass meadows are highly productive ecosystems that are considered hotspots for carbon sequestration. The decline of seagrass meadows of various species has been documented worldwide, including that of Cymodocea nodosa, a widespread seagrass in the Mediterranean Sea. To assess the influence of seagrass decline on the metabolic profile of sediment microbial communities, metaproteomes from two sites, one without vegetation and one with a declining Cymodocea nodosa meadow, were characterised at monthly intervals from July 2017 to October 2018. The differences in the metabolic profile observed between the vegetated and nonvegetated sediment before the decline were more pronounced in the deeper parts of the sediment and disappeared with the decay of the roots and rhizomes. During the decline, the protein richness and diversity of the metabolic profile of the microbial communities inhabiting the nonvegetated sediment became similar to those observed for the vegetated communities. Temporal shifts in the structure of the metabolic profile were only observed in the nonvegetated sediment and were also more pronounced in the deeper parts of the sediment. The assessment of the dynamics of proteins involved in the degradation of organic matter, such as ABC transporters, fermentation-mediating enzymes, and proteins involved in dissimilatory sulphate reduction, reflected the general dynamics of the metabolic profile. Overall, the metabolic profile of the microbial communities inhabiting the nonvegetated sediment was influenced by the decline of seagrass, with stronger shifts observed in the deeper parts of the sediment.