Project description:We performed a comprehensive miRNA profiling analysis of exosomes by Treponema pallidum-stimulated microarrays. A total of 2×106 macrophages were obtained by THP-1 differentiation and grown in RPMI-1640 containing 10% exosome-free FBS. Exosomes were acquired from macrophage culture supernatants with (n = 7) or without (n = 3) T. pallidum. Briefly, macrophages were washed in PBS twice and further grown in fresh medium for 12 h (n = 2), 24 h (n = 2) and 48 h (n = 3) to collect exosomes. Exosomal miRNA microarray assays were carried out with Agilent Human miRNA (8*60K) array.
Project description:Syphilis, caused by Treponema pallidum subsp. pallidum, is an urgent global public health threat. Syphilis vaccine development has been impeded by limited understanding of the molecular mechanisms that enable T. pallidum to establish and maintain infection. The vascular endothelium is critical for T. pallidum attachment, dissemination, and host immune response initiation; however, the molecular details of T. pallidum-endothelial interactions are incompletely understood. To enhance understanding, we performed time-course transcriptomic profiling on T. pallidum-exposed brain microvascular endothelial cells. These analyses showed T. pallidum exposure alters pathways related to extracellular matrix, growth factors, integrins, and Rho GTPases. The induced transcriptional response was consistent with endothelial to mesenchymal transition, a key process involved in fetal development and vascular dysfunction. This study provides a comprehensive understanding of the molecular response of endothelial cells to T. pallidum and identifies the host pathways that may cause syphilis disease symptoms, information that could aid syphilis vaccine design.