Project description:Seagrass meadows represent one of the highest productive marine ecosystems and are of great ecological and economic values. Recently, they have been confronted with worldwide decline. Fungi play important roles in sustaining the ecosystem health as degraders of polycyclic aromatic hydrocarbons (PAHs), but fewer studies have been conducted in seagrass ecosystems. Hence, we investigated the dynamic variations of the fungal community succession under PAH stress in rhizosphere sediment of seagrasses Enhalus acoroides in this study. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), quantitative PCR (qPCR) and a clone library have been employed to analyze the fungal community's shifts. Sequencing results of DGGE and the clone library showed that the predominant species belong to phyla Ascomycota and Basidiomycota. The abundance of three groups decreased sharply over the incubation period, whereas they demonstrated different fungal diversity patterns. Both the exposure time and the PAH concentrations affected the microbial diversity as assessed by PCR-DGGE analysis. Redundancy analysis (RDA) indicated that significant factors driving community shifts were ammonium and pH (p < 0.05). Significant amounts of the variations (31.1%) were explained by pH and ammonium, illustrating that those two parameters were the most likely ones to influence or be influenced by the fungal communities' changes. Investigation results also indicated that fungal communities in seagrass meadow were very sensitive to PAH-induced stress and may be used as potential indicators for the PAH contamination.
Project description:Enhalus acoroides (E. acoroides) is one of the most common species in seagrass meadows. Based on the application of allelochemicals from aquatic plants to inhibit harmful algal blooms (HABs), we used E. acoroides aqueous extract against harmful algae species Phaeocystis globosa (P. globosa). The results showed that E. acoroides aqueous extract could significantly inhibited the growth of P. globosa, decrease the chlorophyll-a content and photosynthetic efficiency (Fv/Fm) values of P. globosa, followed by vacuolization, plasmolysis, and the destruction of organelles. Twelve types of major chemical constituents were identified in E. acoroides aqueous extracts by ultraperformance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS), including six flavonoids, two homocyclic peptides, two long-chain aliphatic amides, one tannin, and one nitrogen heterocyclic compound. Flavonoids were the characteristic chemical constituents of E. acoroides aqueous extract. Furthermore, the antialgal activity of luteolin-7-O-glucuronide (68.125 μg/mL in 8 g/L E. acoroides aqueous extract) was assessed. The EC50-96 h value was 34.29 μg/mL. In conclusion, the results revealed that luteolin 7-O-glucuronide was one of the antialgal compounds of E. acoroides aqueous extract, with potential application as novel algaecide.
| S-EPMC6678453 | biostudies-literature
Project description:Fungal communities associated with the seagrass Enhalus acoroides
Project description:The Indo-Malay Archipelago is regarded as a barrier that separates organisms of the Indian and Pacific Oceans. Previous studies of marine biota from this region have found a variety of biogeographic barriers, seemingly dependent on taxon and methodology. Several hypotheses, such as emergence of the Sunda Shelf and recent physical oceanography, have been proposed to account for the genetic structuring of marine organisms in this region. Here, we used six microsatellite loci to infer genetic diversity, population differentiation and phylogeographic patterns of Enhalus acoroides across the Indo-Malay Archipelago. Heterozygosities were consistently high, and significant isolation-by-distance, consistent with restricted gene flow, was observed. Both a neighbour joining tree based on DA distance and Bayesian clustering revealed three major clusters of E. acoroides. Our results indicate that phylogeographic patterns of E. acoroides have possibly been influenced by glaciation and deglaciation during the Pleistocene. Recent physical oceanography such as the South Java Current and the Seasonally Reversing Current may also play a role in shaping the genetic patterns of E. acoroides.