Project description:Reaumuria soongorica (Pall.) Maxim., a typical species of desert plant, presents excellent tolerability to adverse environment. Until yet, little is known about the molecular mechanisms of stress tolerance in R. soongorica. Herein, we used the RNA-seq to study the transcriptome of R. soongorica leaves
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:In this study, the DEGs in leaves of R. soongorica in response to PEG-induced drought stress, UV-B radiation, combined stress by UV-B radiation and PEG-induced drought, and combined stresses by UV-B radiation, PEG-induced drought and NaCl in contrast to control group were examined, respectively, using DGE tag profiling technology. Analysis of gene expression related to stress response should provide further insight into the molecular mechanisms of stress tolerance in R. soongorica. Based on the putative functions of the identified genes, some important genes may be cloned. Moreover, the cloning of stress tolerance genes and determination of their expression patterns may offer some attractive candidate genes and valuable information for improving stress tolerance of plants through genetic engineering.