Project description:The root transcriptome analyses of peanut cultivated variety Xiaobaisha in response to benzoic acid and p-cumaric acid stress
| PRJNA576608 | ENA
Project description:The root transcriptome analyses of peanut wild species A.correntina and cultivated variety Xiaobaisha in response to benzoic acid and p-cumaric acid stress
Project description:Exposure of Erwinia chrysanthemi 3937 to a combination of phenolic acids (salicylic, benzoic and t-cinnamic) each at a concentration of 0.078 mM resulted in activation of genes encoding efflux pumps and those involved in oxidative stress resistance. Keywords: phenolic acid exposure gene response
Project description:We report the results of high throughput sequencing on P. gingivalis cells in the presence or absence of 4 aminobenzoate/para-amino benzoic acid (pABA)
2017-02-18 | GSE78126 | GEO
Project description:Response mechanism of Saccharomyces cerevisiae under benzoic acid stress in ethanol fermentation using suga rcane molasses
Project description:Pigs were reared artificially on either milk replacer, milk replacer with liquid creep feed, milk replacer with creep feed + whey, or milk replacer with creep feed + benzoic acid.
Project description:The combined effects of high temperature stress from global warming and phosphorus (P) deficiency due to limited P rock reserves pose a critical threat to modern agriculture. However, the understanding of the effect of the combined stress on plants are limited. Here, we performed hydroponic culture to investigate the physiological and transcriptional response of the model legume Lotus japonicus to simultaneous moderate high temperature and low P conditions. While both elevated temperature and low P individually reduced shoot biomass, their combination alleviated growth reduction, with greater shoot biomass observed under combined stress than under low P alone. Lotus japonicus enhanced root-secreted acid phosphatase activity in response to low P alone and increased organic acid exudation rate, such as malate and citrate, under elevated temperature, regardless of P supply. We explored root transcriptome, and detected an up-regulated PEPC1 gene, encoding phosphoenolpyruvate carboxylase which suggested to be related with organic acid root exudation. Additionally, elevated temperature also increased metal ion translocation and absorption, anthocyanin levels, and carbohydrate transport in shoots. Transcriptomic analysis revealed that low P stress altered heat shock protein (HSP) expression, likely due to reduced ATP availability. This study demonstrates that L. japonicus employs distinct and overlapping strategies to adapt to the combined stresses of elevated temperature and P deficiency, including adjustments in exudation patterns, nutrient transport, and stress-responsive gene expression.
Project description:Genomic diversity is a source of transcriptomic and phenotypic diversities. Although genomic variations in rice (Oryza sativa) accessions have been extensively analyzed, information of transcriptomic and phenotypic variations, especially for below-ground variations, are limited. Here, we report the diversities of above- and below-ground traits and transcriptomes in highly diversified 61 rice accessions grown in the upland-field. We found that phenotypic variations were explained by four principal components and that tiller numbers and crown root diameters could summarize admixture groups. Transcriptome analysis revealed that admixture-group-associated differentially expressed genes were enriched with stress response related genes, suggesting that admixture groups have distinct stress response mechanisms. Root growth was negatively correlated with auxin inducible genes, suggesting the association between auxin signaling and mild drought stress. Negative correlation between crown root diameters and stress response related genes suggested that thicker crown root diameter is associated with mild drought stress tolerance. Finally co-expression network analysis implemented with DAP-seq analysis identified phytohormone signaling network and key transcription factors negatively regulating crown root diameters. Our datasets would serve as an important resource for understanding genomic and transcriptomic basis of phenotypic variations under the upland-field condition.