Project description:Glucosinolates are defense-related secondary metabolites found in Brassicaceae. When Brassicaceae come under attack, glucosinolates are hydrolyzed into different forms of glucosinolate hydrolysis products (GHPs). Among the GHPs, isothiocyanates are the most comprehensively characterized defensive compounds, whereas the functional study of nitriles, another group of GHP, is still limited. Therefore, this study investigates whether 3-butenenitrile (3BN), a nitrile, can trigger the signaling pathways involved in the regulation of defense responses in Arabidopsis thaliana against biotic stresses. Briefly, the methodology is divided into three stages, (i) evaluate the physiological and biochemical effects of exogenous 3BN treatment on Arabidopsis, (ii) determine the metabolites involved in 3BN-mediated defense responses in Arabidopsis, and (iii) assess whether a 3BN treatment can enhance the disease tolerance of Arabidopsis against necrotrophic pathogens. As a result, a 2.5 mM 3BN treatment caused lesion formation in Arabidopsis Columbia (Col-0) plants, a process found to be modulated by nitric oxide (NO). Metabolite profiling revealed an increased production of soluble sugars, Krebs cycle associated carboxylic acids and amino acids in Arabidopsis upon a 2.5 mM 3BN treatment, presumably via NO action. Primary metabolites such as sugars and amino acids are known to be crucial components in modulating plant defense responses. Furthermore, exposure to 2.0 mM 3BN treatment began to increase the production of salicylic acid (SA) and jasmonic acid (JA) phytohormones in Arabidopsis Col-0 plants in the absence of lesion formation. The production of SA and JA in nitrate reductase loss-of function mutant (nia1nia2) plants was also induced by the 3BN treatments, with a greater induction for JA. The SA concentration in nia1nia2 plants was lower than in Col-0 plants, confirming the previously reported role of NO in controlling SA production in Arabidopsis. A 2.0 mM 3BN treatment prior to pathogen assays effectively alleviated the leaf lesion symptom of Arabidopsis Col-0 plants caused by Pectobacterium carotovorum ssp. carotovorum and Botrytis cinerea and reduced the pathogen growth on leaves. The findings of this study demonstrate that 3BN can elicit defense response pathways in Arabidopsis, which potentially involves a coordinated crosstalk between NO and phytohormone signaling.
Project description:To investigate the processes affected when plants are exposed to 3-butenenitrile (3BN; allyl cyanide ACN), we performed a genome scale transcriptional profiling of Arabidopsis thaliana Col(0) and the nia1nia2 double mutant after 24 hour treatment with 3BN.
Project description:Root exudates are composed of primary and secondary metabolites known to modulate the rhizosphere microbiota. Glucosinolates are defense compounds present in the Brassicaceae family capable of deterring pathogens, herbivores and biotic stressors in the phyllosphere. In addition, traces of glucosinolates and their hydrolyzed byproducts have been found in the soil, suggesting that these secondary metabolites could play a role in the modulation and establishment of the rhizosphere microbial community associated with this family. We used Arabidopsis thaliana mutant lines with disruptions in the indole glucosinolate pathway, liquid chromatography-tandem mass spectrometry (LC-MS/MS) and 16S rRNA amplicon sequencing to evaluate how disrupting this pathway affects the root exudate profile of Arabidopsis thaliana, and in turn, impacts the rhizosphere microbial community. Chemical analysis of the root exudates from the wild type Columbia (Col-0), a mutant plant line overexpressing the MYB transcription factor ATR1 (atr1D) which increases glucosinolate production, and the loss-of-function cyp79B2cyp79B3 double mutant line with low levels of glucosinolates confirmed that alterations to the indole glucosinolate biosynthetic pathway shifts the root exudate profile of the plant. We observed changes in the relative abundance of exuded metabolites. Moreover, 16S rRNA amplicon sequencing results provided evidence that the rhizobacterial communities associated with the plant lines used were directly impacted in diversity and community composition. This work provides further information on the involvement of secondary metabolites and their role in modulating the rhizobacterial community. Root metabolites dictate the presence of different bacterial species, including plant growth-promoting rhizobacteria. Our results suggest that alterations in the indole glucosinolate pathway cause disruptions beyond the endogenous levels of the plant, significantly changing the abundance and presence of different metabolites in the root exudates of the plants as well as the microbial rhizosphere community.
Project description:Lipids play crucial roles in plant-microbe interactions, functioning as structural components, signaling molecules, and microbe-associated molecular patterns (MAMPs); however, the mechanisms underlying lipid perception and signaling pathways in plants remain largely unknown. This study investigates the immune responses triggered in Hordeum vulgare (barley) by lipid extracts from the root endophytic fungus Serendipita indica. We compare these responses to those elicited by the carbohydrate MAMP chitohexaose and the fungal sterol lipid ergosterol, a 5,7-diene oxysterol recognized as a MAMP in plants. Our results demonstrate that S. indica lipid extract induces hallmarks of pattern-triggered immunity (PTI) in barley. Ergosterol was identified as the main immunogenic component and was detected in the apoplastic fluid of S. indica-colonized barley roots. Using a multi-omics approach combining transcriptomics, phosphoproteomics, and metabolomics, our data provide evidence for the activation of phosphatidylinositol phosphate (PIP) signaling and diterpene biosynthesis upon exposure to fungal lipids. Furthermore, we show that phosphatidic acid (PA) enhances lipid-mediated apoplastic reactive oxygen species (ROS) production in barley. These findings indicate that plant lipids mediate immune responses to fungal lipids in barley, advancing our understanding of lipid perception and signaling in plant-microbe interactions.
Project description:Plant compensatory responses depends on transcriptional reprogramming. We used microarray analysis to understand the differential gene expression pattern between clipped (herbivore browsed) and unclipped plant.
Project description:Plant compensatory responses depends on transcriptional reprogramming. We used microarray analysis to understand the differential gene expression pattern between clipped (herbivore browsed) and unclipped plant. Arabidopsis ecotypes Columbia and Landsberg erecta were chosen due to their differential compensatory response. The plants were grown in greenhouse. At bolting stage the plants were clipped to imitate herbivore damage. Following day the samples were collected from clipped and unclipped plants.
Project description:This SuperSeries is composed of the following subset Series: GSE36882: Critical Role of STAT5 Transcription Factor Tetramerization for Cytokine Responses and Normal Immune Function (ChIP-Seq and RNA-Seq) GSE36888: Critical Role of STAT5 Transcription Factor Tetramerization for Cytokine Responses and Normal Immune Function (RNA) Refer to individual Series
Project description:In this project we aimed to investigate new connections (edges) in the glucosinolate metabolism molecular network. We studied proteome changes in myb28/29 and cyp79B2/B3 Arabidopsis thaliana mutants as an effect of glucosinolate metabolism perturbation.
Project description:Nowadays one of the main challenges is moving towards an eco-sustainable agriculture, able to preserve the food production through a reduced use of pesticides. The current global food sustenance by intensive agriculture mainly based on economic crop monocultures drastically reduces the biodiversity increasing the yield losses due to biotic and abiotic stress. To try to ensure yield stability also enhancing the plant resistance responses to promote an eco-sustainable management of plant diseases, a technology based on plasma activated water (PAW), characterized by the production of reactive oxygen and nitrogen species, was tested. Differential expression levels of selected genes involved in the plant defence pathways and the microRNAs composition in PAW treated- micropropagated periwinkle shoots and grapevines were analyzed. The results indicate that PAW treatment enhances plant defence responses at both, transcriptional and post-transcriptional level, leading to an increased synthesis in periwinkle of vinblastine and vindoline, anti-oxidant compounds employed in the pharmaceutical industry and in grapevine of resveratrol that is an important compound for human health.