Project description:Metagenome data from soil samples were collected at 0 to 10cm deep from 2 avocado orchards in Channybearup, Western Australia, in 2024. Amplicon sequence variant (ASV) tables were constructed based on the DADA2 pipeline with default parameters.
Project description:D-galactose orally intake ameliorate DNCB-induced atopic dermatitis by modulating microbiota composition and quorum sensing. The increased abundance of bacteroidetes and decreased abundance of firmicutes was confirmed. By D-galactose treatment, Bacteroides population was increased and prevotella, ruminococcus was decreased which is related to atopic dermatitis.
Project description:We performed RNAseq on intestinal polyps from diptheria toxin-treated ApcMin;Lgr5DTR mice to investigate the effect of an acute selective pressure on stem cell populations in intestinal lesions. Lgr5+ cells in the ApcMin;Lgr5DTR mice were ablated with a single intraperitoneal dose of diphtheria toxin in saline (50 μg/kg), and samples were collected after 24 hours and after 5 days. Untreated ApcMin mice were used as control. Intestinal polyps were excised and collected for RNA sequencing.
Project description:We report the recovery of metagenome-assembled genomes (MAGs) from fecal samples collected in 2018 from five healthy adult female pigs in southeast England. The resulting nonredundant catalog of 192 MAGs encompasses 102 metagenomic species, 41 of them novel, spanning 10 bacterial and 2 archaeal phyla.
Project description:Exposure to high-dose radiation causes life-threatening serious intestinal damage. Histological analysis is the most accurate method for judging the extent of intestinal damage after death. However, it is difficult to predict the extent of intestinal damage to body samples. Here we focused on extracellular microRNAs (miRNAs) released from cells and investigated miRNA species that increased or decreased in serum and feces using a radiation-induced intestinal injury mouse model. A peak of small RNA of 25–200 nucleotides was detected in mouse serum and feces 72 h after radiation exposure, and miRNA presence in serum and feces was inferred. MiRNAs expressed in the small intestine and were increased by more than 2.0-fold in serum or feces following a 10 Gy radiation exposure were detected by microarray analysis and were 4 in serum and 19 in feces. In this study, miR-375-3p, detected in serum and feces, was identified as the strongest candidate for a high-dose radiation biomarker in serum and/or feces using a radiation-induced intestinal injury model.