Project description:Euproctis pseudoconspersa is a major pest of tea plants, and also causes a skin rash on workers in tea plantations. Research on virus could provide fundamental insights for classification, genetic diversity, evolution, and host-virus interaction mechanisms. Here, we identified a novel RNA virus, Euproctis pseudoconspersa bunyavirus (Phenuiviridae), and found that it is widely distributed in field populations of E. pseudoconspersa. The replication of virus in E. pseudoconspersa was indicated by Tag-PCR. These results contribute to the classification of bunyaviruses and provide insight into the diversity of commensal E. pseudoconspersa bunyavirus and the host.
Project description:The tea tussock moth (Euproctis pseudoconspersa) is a common tea plantation pest with Type III sex pheromone components (SPCs). However, the olfactory genes involved in the perception of Type III SPCs remain unknown. To identify the olfactory genes involved in E. pseudoconspersa olfactory perception, we sequenced the transcriptomes of different tissues from male and female moths. We identified 27 chemosensory proteins, 39 odorant-binding proteins (OBPs), 28 ionotropic receptors (IRs), and 67 odorant receptors (ORs). Phylogenetic and antennal abundance analyses showed that EpseOR12, EpseOR13, EpseOR15, EpseOR16, and EpseOR18 belonged to the pheromone receptor clades of Type II moths, with predominant expression in male antennae. Besides these EpseORs, EpseOR14 and EpseOR32 were two of the most abundant EpseORs in male antennae, where they were predominantly expressed. Four pheromone-binding proteins (PBPs) were identified, with higher expression in male antennae. EpseORs and EpsePBPs may be involved in Type III SPC detection. Additionally, a few EpseOBPs, EpseIRs, and EpseORs were predominantly expressed in either male or female antennae. These genes may play important roles in olfaction and may be involved in detecting host plant volatiles and pheromones. These results provide a foundation for further exploration of the molecular mechanisms of E. pseudoconspersa olfaction.