Project description:Illumina technology was used to generate mRNA profiles of Populus tremula x alba 717-1B4 control roots and Laccaria bicolor S238N ectomycorrhiza. Total RNA was extracted, TruSeq mRNA Stranded libraries were constructed and and sequenced (2 x 150 bp Illumina HiSeq3000) at the Genotoul sequencing facilities (Toulouse, France). Raw reads were trimmed for low quality (quality score 0.05), Illumina adapters and sequences shorter than 15 nucleotides and aligned to the Populus trichocarpa v4.1 primary transcripts available at Phytozome (https://phytozome-next.jgi.doe.gov/info/Ptrichocarpa_v4_1l) using CLC Genomics Workbench v24.
Project description:Illumina HiSeq technology was used to generate mRNA profiles from Cenococcum geophilum ectomycorrhizal poplar roots compared to free-living mycelium . Ectomycorrhizal poplar roots and control mycelium were harvested after 60 days and used for RNA extraction. Reads of 150bp were generated and aligned to the C. geophilum reference genome (https://genome.jgi.doe.gov/Cenge3/Cenge3.home.html).
Project description:Illumina technology was used to generate mRNA profiles of a time course of Laccaria bicolor S238N and Populus tremula x alba 717-1B4 in vitro ectomycorrhizal development. Total RNA was extracted, TruSeq mRNA Stranded libraries were constructed and and sequenced in triplicates (2 x 150 bp Illumina HiSeq3000) at the Genotoul sequencing facilities (Toulouse, France). Raw reads were trimmed for low quality (quality score 0.05), Illumina adapters and sequences shorter than 15 nucleotides and aligned to the L. bicolor v2 reference transcripts available at the JGI database https://mycocosm.jgi.doe.gov/Lacbi2/Lacbi2.home.html using CLC Genomics Workbench v8.
Project description:To obtain genes expression in different parts of 84k poplar stems, transcriptome sequencing was performed using Illumina Novaseq 6000 second-generation sequencing platform from Shanghai BIOZERON Co. Ltd (www.biozeron.com). Selecte three stem segments of plants REPEAT 1, 2 and 3 with good and similar growth to use: 2nd-3rd internodes (poplar stem top: PST1, PST2, PST3); 9th-10th internodes (poplar stem middle: PSM1, PSM2, PSM3); 14th-15th internodes (poplar stem bottom: PSB1, PSB2, PSB3). [Or the three repeating organisms are also called poplar A, B, C. From top to bottom, the three parts of the stem are also called stem 1, 2, 3.]
Project description:Here we applied a novel approach to isolate nuclei from complex plant tissues (https://doi.org/10.1371/journal.pone.0251149), to dissect the transcriptome profiling of the hybrid poplar (Populus tremula × alba) vegetative shoot apex at single-cell resolution.
Project description:Plant height is an important agronomic and horticultural trait that impacts plant productivity, durability and esthetic appeal. A number of the plant hormones such as gibberellic acid (GA), auxin and ethylene have been linked to control of plant architecture and size. Reduction in GA synthesis and auxin transport result in dwarfism while ethylene may have a permissive or repressive effect on tissue growth depending upon the age of plant tissues or the environmental conditions considered. We describe here an activation-tagged mutant of Populus tremula x P. alba clone 717-1B4 identified from 2000 independent transgenic lines due to its significantly reduced growth rate and smaller leaf size. Named dwarfy, the phenotype is due to increased expression of PtaACC SYNTHASE8, which codes for an enzyme in the first committed step in the biosynthesis of ethylene. Stems of dwarfy contain fiber and vessel elements that are reduced in length while leaves contain fewer cells. These morphological differences are linked to PtaACS8 inducing different transcriptomic programs in the stem and leaf, with genes related to auxin diffusion and sensing being repressed in the stem and genes related to cell division found to be repressed in the leaves. Altogether, our study gives mechanistic insight into the genetics underpinning ethylene-induced dwarfism in a perennial model organism.