Project description:The great tit is a widely studied passerine bird species in ecology that, in the past decades, has provided important insights into speciation, phenology, behavior and microevolution. After completion of the great tit genome sequence, a customized high density 650k SNP array was developed enabling more detailed genomic studies in this species.
2018-02-19 | GSE105131 | GEO
Project description:Urban great tit genomics
| PRJEB44069 | ENA
Project description:Genome resequencing of European great tit
Project description:Rationale: DNA methylation plays a critical role in asthma development, but differences in DNA methylation associated with asthma severity, especially among adults, are less well-defined. Changes in DNA methylation are influenced by exposure to air pollution, which is a risk factor for asthma exacerbation and severity. Here, we examined how DNA methylomic patterns in adult asthmatics differ by asthma severity and exposure to different components of air pollution. Methods: Peripheral blood CD3+ T cells from adult asthmatics in Beijing, China were serially collected from 37 patients (130 samples total) and analyzed for global DNA methylation using the Illumina MethylationEPIC Array. Measurements and Main Results: Significant differences in DNA methylation were noted among subjects with different degrees of asthma severity, as measured by fraction of exhaled nitric oxide, forced expiratory volume, and asthma control test scores. Differences in DNA methylation were annotated to genes that were enriched in pathways related to asthma or T cell function, and included gene ontology categories related to cellular adhesion, developmental pathways, and calcium signaling. Notable genes that were differentially methylated based on asthma severity included RUNX3, several members of the HLA family, PDGFRA, CDH1, CAV1, and NOTCH4. Differences in DNA methylation also varied by exposure to ambient air pollution, with different components of pollution effecting methylation of different groups of genes. Conclusion: These findings demonstrate how adult asthmatics possess widespread differences in the DNA methylation that associated with varying asthma severity and how air pollution might contribute to more severe asthma via changes in DNA methylation.
2024-07-31 | GSE226257 | GEO
Project description:Epigenetics and the city: non-parallel DNA methylation modifications across pairs of urban-rural Great tit populations.
| PRJNA786007 | ENA
Project description:Great tit - faecal, egg and embryo microbiota
Project description:Exposure to environmental stressors is known to increase disease susceptibility in unexposed descendants in the absence of detectable genetic mutations. The mechanisms mediating environmentally-induced transgenerational disease susceptibility are poorly understood. We showed that great-great-grandsons of female mice exposed to tributyltin (TBT) throughout pregnancy and lactation were predisposed to obesity due to altered chromatin organization that subsequently biased DNA methylation and gene expression. Here we analyzed DNA methylomes and transcriptomes from tissues of animals ancestrally exposed to TBT spanning generations, sexes, ontogeny, and cell differentiation state. We found that TBT elicited concerted alterations in the expression of “chromatin organization” genes and inferred that TBT-disrupted chromatin organization might be able to self-reconstruct transgenerationally. We also found that the location of “chromatin organization” and “metabolic” genes is biased similarly in mouse and human genomes, suggesting that exposure to environmental stressors in different species could elicit similar phenotypic effects via self-reconstruction of disrupted chromatin organization.
Project description:Idiopathic Pulmonary Fibrosis (IPF) is a chronic progressive lung disease that affects more than 5 million people worldwide with a steady increase in both incidence and mortality. There is currently no effective therapy and the median survival without transplant is 2-5 years. The etiological factor is unknown, but several observational and pathogenesis studies suggest that environmental agents may cause IPF. DNA methylation is a type of chemical modification of DNA such environmental and occupational factors, that can induced a changes in the regulation of biological processes and link to diseases such as a cancer. We hypothesize that the global changes in methylation patterns of IPF lungs caused by environmental factors. In this study we will identify the global methylation signatures of the IPF lung and to compare to methylation signature of lung cancer. The DNA methylation profiles of IPF lung tissue differs from control lung but it shares great similarity with that of lung cancer.
Project description:Maternal exposures during pregnancy influence the risk of many chronic adult-onset diseases in the offspring. We investigated whether feeding pregnant rats a high fat (HF) or ethinyl-estradiol (EE2)-supplemented diet affects carcinogen-induced mammary cancer risk in daughters, granddaughters and great-granddaughters. Here we show that mammary tumorigenesis is higher in daughters and granddaughters of HF rat dams and in daughters, granddaughters and great-granddaughters of EE2 rat dams. Outcross experiments indicate that increased mammary cancer risk is transmitted to HF granddaughters equally through the female or male germlines, but it is only transmitted to EE2 granddaughters through the female germline. The effects of maternal EE2 exposure on offspring's mammary cancer risk are associated with alternations in the DNA methylation machinery and methylation patterns in mammary tissue of all three EE2 generations. We conclude that dietary and estrogenic exposures in pregnancy increase breast cancer risk in multiple generations of offspring, possibly through non-genetic means We examined the whole genome methylation status of both control and EE2-supplemented diet rats in three consecutive generations
Project description:The decline of brain function during aging is associated with epigenetic changes, including DNA methylation. Lifestyle interventions can improve brain function during aging, but their influence on age-related epigenetic changes is unknown. Using genome-wide DNA methylation sequencing, we here show that environmental enrichment counteracted age-related DNA methylation changes in the hippocampal dentate gyrus of mice. Specifically, environmental enrichment prevented the aging-induced CpG hypomethylation at target sites of the methyl-CpG-binding protein Mecp2, which is known to control neuronal functions. The genes at which environmental enrichment counteracted aging effects have described roles in neuronal plasticity, neuronal cell communication and adult hippocampal neurogenesis and are dysregulated with age-related cognitive decline in the human brain. Our results highlight the rejuvenating effects of environmental enrichment at the level of DNA methylation and give molecular insights into the specific aspects of brain aging that can be counteracted by lifestyle interventions.