Project description:The molecular regulation mechanisms involved in stress tolerance remain largely unknown. Drunken horsegrass (Achnatherum inebrians), an important perennial bunchgrass in China, forms a naturally occurring symbiosis with an asexual symbiotic fungus Neotyphodium gansuense.To gain insight into the molecular mechanisms involved in the low temperature resistance of E+ drunken horsegrass, Solexa deep-sequencing was used to identify candidate genes showing differential expression.
Project description:This article reports the complete chloroplast genome of Achnatherum inebrians, a poisonous herb that is widely distributed in the rangelands of Northern China. The genome is 137 714 bp in total and consists of a large single-copy (81 758 bp) region and small single-copy (12 682 bp) region separated by a pair of inverted repeats (21 637 bp). The genome contains 130 genes, including 84 protein-coding genes, 38 tRNA genes and 8 ribosomal RNA genes, and the guanine + cytosine content is 36.17%. We subsequently performed comparative analysis of complete genomes from A. inebrians and other Poaceae-related species from GenBank. Thirty-eight simple sequence repeats were identified, further demonstrating rapid evolution in Poaceae. Finally, the phylogenetic trees of 37 species of Poaceae and 2 species of Amaranthaceae were constructed by using maximum likelihood and Bayesian inference methods, based on the genes of the complete chloroplast genome. We identified hotspots that can be used as molecular markers and barcodes for phylogenetic analysis, as well as for species identification. Phylogenetic analysis indicated that A. inebrians is a member of the genus Stipa rather than Achnatherum.
Project description:The cuticular wax serves as the outermost hydrophobic barrier of plants against nonstomatal water loss and various environmental stresses. An objective of this study was to investigate the contribution of the mutualistic fungal endophyte Epichloë gansuensis to leaf cuticular wax of Achnatherum inebrians under different soil moisture availability. Through a pot experiment and gas chromatography−mass spectrometry (GC−MS) analysis, our results indicated that the hydrocarbons were the dominant components of leaf cuticular wax, and the proportion of alcohols, aldehydes, amines, and ethers varied with the presence or absence of E. gansuensis and different soil moisture availability. Amines and ethers are unique in endophyte-free (EF) A. inebrians plants and endophyte-infected (EI) A. inebrians plants, respectively. By transcriptome analysis, we found a total of 13 differentially expressed genes (DEGs) related to cuticular biosynthesis, including FabG, desB, SSI2, fadD, BiP, KCS, KAR, FAR, and ABCB1. A model is proposed which provides insights for understanding cuticular wax biosynthesis in the association of A. inebrians plants with E. gansuensis. These results may help guide the functional analyses of candidate genes important for improving the protective layer of cuticular wax of endophyte-symbiotic plants.
Project description:Achnatherum inebrians is a perennial grass widely distributed in northwest China. Nearly all wild A. inebrians plants are infected by Epichloë endophytes. In this study, bacteria from the phyllosphere were isolated from leaves of both endophyte-free and endophyte-infected A. inebrians and sequenced for identification. Pseudomonas, comprising 48.12% of the culturable bacterial communities, was the most dominant bacterial genus. Thirty-four strains from 12 Pseudomonas species were used to inoculate A. inebrians seeds and plants. Results indicated that Epichloë significantly increased the diversity and richness index of the phyllosphere. Pseudomonas Sp1, Sp3, Sp5 and Sp7 had a significantly positive effect on plant growth and photosynthesis, whereas Sp10, Sp11 and Sp12 had a significantly negative effect. Whole-genome and pan-genome analysis suggested that the variability in the effects of Pseudomonas on A. inebrians was related to differences in genome composition and genomic islands.