Project description:Endophytic fungi are fungi that live inside the roots of plants. They can promote plant growth through a variety of direct and indirect mechanisms. Direct mechanisms include the production of phytohormones, such as auxin and gibberellins, which can stimulate plant growth. Endophytic fungi can also fix nitrogen, solubilize phosphate, and produce siderophores, which are compounds that chelate iron and make it available to plants. In addition, some endophytic fungi produce antimicrobial metabolites that can protect plants from pests and pathogens. Indirect mechanisms include the induction of systemic resistance, which is a plant's ability to defend itself against pests and pathogens. Endophytic fungi can also help plants to tolerate abiotic stresses, such as drought, salinity, and heavy metals. In this study, we used a proteomic approach to identify the proteins that are expressed in rice plants after they are treated with endophytic fungi. We found that the treatment with endophytic fungi resulted in the expression of a number of proteins involved in plant growth, stress response, and defense. These results suggest that endophytic fungi can promote plant growth and improve plant resilience to stress.
Project description:Keratin-rich byproducts from the poultry, textile, and leather industries pose a significant challenge for sustainable waste management due to their highly recalcitrant nature. While microbial degradation may offer a viable solution, the mechanisms underlying keratin breakdown remain largely unexplored. In this study, we employed a high-resolution proteogenomic approach to characterize the keratinolytic machinery of Onygena corvina, a non-pathogenic saprophytic fungus. Using a membrane agar plate method with insoluble substrates, we obtained secretomes enriched in secreted and substrate-bound proteins during growth on α- and β-keratin-rich substrates, specifically wool and feather meal, as well as on casein (as control) at days 1, 2, and 3.
Project description:Endophytic fungi are root-inhabiting fungi that can promote plant growth in a variety of ways. They can directly stimulate plant growth by producing phytohormones, such as auxin and gibberellins. They can also indirectly promote plant growth by helping plants to acquire nutrients, such as nitrogen and phosphorus, and by protecting plants from pests and pathogens.In this study, we used a proteomic approach to identify the proteins that are expressed in rice plants after they are treated with endophytic fungi. We found that the treatment with endophytic fungi resulted in the expression of a number of proteins involved in plant growth, nutrient acquisition, and defense. These results suggest that endophytic fungi can promote plant growth and improve plant resilience to stress.
Project description:Interventions: ntestinal polyp gruop and colorectal cancer gruop:Nil
Primary outcome(s): bacteria;fungi;archaea;virus
Study Design: Factorial
Project description:Interventions: healthy people, intestinal polyp group and intestinal cancer group.:Nil
Primary outcome(s): bacteria;fungi;phages
Study Design: Factorial