Project description:Six isolates of PT21/28 and six of PT32 were analysed by CGH using UBECarray3 microarrays (containing probes for E. coli K-12 str. MG1655 and O157:H7 str. EDL933 and Sakai) to define genotypic differences between phage types. gDNA from E.coli O157 str. Sakai was hybridised to all arrays to provide a universal control channel on all arrays.
Project description:Purified phage was used to prevent tumor growth in a mouse model of bacteria aggravated-colorectal cancer. Composite E. coli phage or vehicle control was added to the drinking water of specific pathogen free (SPF) APCmin mice and animals were colonized with E.coli NC101. APCmin mice displayed no overall difference in the number of tumors that formed within the small intestine, however colonization with E. coli NC101 accelerated the growth of tumors resulting in a significant increase in large tumor formation. Importantly, bacteriophage treatment of AIEC colonized APCmin animals significantly reduced E. coli colonization.
Project description:A recently isolated phage, vB_EcoP_SU10 (SU10) with unusual elongated C3 morphotype, can infect a wide range of E.coli strains. We have sequenced the genome of SU10, and further characterization has been conducted by MS-based proteomics.
Project description:IP-MS
Raw data were searched against a combined reference proteome that included the E.coli K-12 strain MG1655 proteome, T5 phage proteome and the SenDRT RT sequence.
Project description:It has been shown that the filamentous phage, Pf4, plays an important role in biofilm development, stress tolerance, genetic variant formation and virulence in Pseudomonas aeruginosa PAO1. These behaviours are linked to the appearance of superinfective phage variants. Here, we have investigated the molecular mechanism of superinfection as well as how the Pf4 phage can control host gene expression to modulate host behaviours. Pf4 exists as a prophage in PAO1 and encodes a homolog of the P2 phage repressor C. Through a combination of molecular techniques, ChIPseq and transcriptomic analyses, we show that repressor C (Pf4r) is the minimal factor for immunity against reinfection by Pf4 possibly through Pf4r binding to its putative promoter region, and that Pf4r also functions as a transcriptional regulator for expression of host genes. A binding motif for Pf4r was also identified. In wild type P. aeruginosa and Pfr4 complemented Pf4 deficient mutant strains, virulence factor related genes including phenazine and type VI secretion system effectors were upregulated, potentially explaining the reduced virulence of Pf4-deficient P. aeruginosa PAO1. X-ray crystal structure analysis shows that Pf4r forms symmetric homo-dimers homologous to the E.coli bacteriophage P2 RepC protein. A mutation associated with the superinfective Pf4r variant, found at the dimer interface, suggests dimer formation may be disrupted, which derepresses phage replication. This is supported by MALS analysis where the Pf4r* protein only shows monomer formation. Collectively, these data suggest the mechanism by which filamentous phages play such an important role in P. aeruginosa biofilm development.
2021-01-31 | GSE154459 | GEO
Project description:Repeatability and coevolution between E.coli and Phage T3
Project description:Six isolates of PT21/28 and six of PT32 were analysed by CGH using UBECarray3 microarrays (containing probes for E. coli K-12 str. MG1655 and O157:H7 str. EDL933 and Sakai) to define genotypic differences between phage types. gDNA from E.coli O157 str. Sakai was hybridised to all arrays to provide a universal control channel on all arrays. gDNA from 12 PT 21/28 & 32 isolates were labelled with Cy5 and control gDNA from str. Sakai was labelled with Cy3. Test and control gDNA was hybridised to UBECarray3 microarrays. The LOWESS normalised relative signal to the Sakai control channel was used to compare between samples.