Project description:We adopted the high-throughput sequencing technology and compared the transcriptomes of Moso bamboo rhizome buds in germination stage and late development stage. We found that the development of Moso bamboo rhizome lateral buds was coordinated by multiple pathways, including meristem development, sugar metabolism and phytohormone signaling. Phytohormones have fundamental impacts on the plant development. We found the evidence of several major hormones participating in the development of Moso bamboo rhizome lateral bud. Furthermore, we showed direct evidence that Gibberellic Acids (GA) signaling participated in the Moso bamboo stem elongation.
2019-12-14 | GSE142030 | GEO
Project description:Development and Characterization of microsatellite (SSR) markers in Uraria picta
Project description:Moso bamboo is a fast-growing bamboo species with high economic, social and cultural value. The method of transplanting moso bamboo seedlings for afforestation has become a more economical and effective method. The effect of light on the growth of plant seedlings is mainly reflected in the regulation of different light quality on the growth and development of seedlings, including light morphogenesis, photosynthesis and secondary metabolites. Therefore, studying the effects of specific wavelength light on the physiology and proteome of moso bamboo seedlings will play an important role in growing seedlings and seed cultivation of moso bamboo. Here, moso bamboo seeds were germinated in the dark and then were transferred to the blue and red-light conditions. After 14 days, we observed the effects of different light treatments on the growth and development of seedlings, and then compared and analyzed their proteome.