Project description:Metagenome data from soil samples were collected at 0 to 10cm deep from 2 avocado orchards in Channybearup, Western Australia, in 2024. Amplicon sequence variant (ASV) tables were constructed based on the DADA2 pipeline with default parameters.
Project description:We report raw bulk RNA sequencing data rice roots (X.kitaake) protoplasted for 2.5 hours and 3 hours to eliminate the effects of protoplasting duration on our scRNA-seq analysis, as well as rice roots grown in gel, non-compacted soil and compacted soil conditions to verify our findsing with scRNA-seq studies
Project description:Intensive application of inorganic nitrogen underlies marked increase in crop production yet imposes detrimental impact on ecosystems, hence it is crucial for future sustainable agriculture to improve nitrogen-use efficiency (NUE). Here we report the genetic basis of NUE associated with the local soil adaptation in rice. With a diverse rice germplasm panel collected from different ecogeographic regions, we performed genome-wide association study on tillering response to nitrogen (TRN), the most correlated trait with NUE of rice, and identified OsTCP19 as a modulator of TRN via transcriptionally responding to nitrogen and targeting to Dwarf and Low-Tillering (DLT), a tiller-promoting gene. A 29-bp InDel in OsTCP19 promoter confers differential transcription response to nitrogen and TRN variation among rice varieties. The high-TRN allele of OsTCP19 (OsTCP19-H) is prevalent in wild rice population, but largely lost in modern cultivars correlating with increased local soil nitrogen content, suggesting that it might have contributed to geographic adaptation in rice. Introgression of OsTCP19-H into modern rice cultivars boosts grain yield and NUE under low or moderate nitrogen levels, demonstrating its enormous potential for rice breeding and environment amelioration through reducing nitrogen application.
Project description:One of the serious constraints to realize high level of rice crop productivity in Indian agriculture has been due to soil moisture stress (SMS) situation that growing plants often face. In order to increase or maintain the crop productivity in SMS situation our initial aim is to understand the drought response mechanism in different genotypes of rice. For thorough analysis of SMS situation in rice we have taken here two wild genotypes of rice namely Oryza nivara, Oryza rufipogan and three Indian cultivar namely Oryza Nagina-22, Oryza IR20 and Oryza Vandana, where IR20 is known to be susceptible and Vandana is known to be tolerant under SMS condition. Global analysis of transcript profiling under SMS condition reveal the actual picture of genes responsive to stress situation in different genetic background of rice. Furthermore it would help us in the selection of most desirable resource for crop breeding without compromising the yield of crop. We used the 44k rice Oligoarray from Agilent technologies to study the transcript profiling from five genotypes of rice under control, soil moisture stress and after recovery conditions during vegetative and grainfilling phase.Here in case of Nagina-22 we have taken grainfilling stage.
Project description:An indica rice cultivar FR13A, is widely grown as submergence tolerant variety and can withstand submergence up to two weeks. The tolerance is governed by a major QTL on chromosome 9 and represented as sub1. Recently the gene for sub1 has been mapped and cloned. However, the trait is governed by several QTLs and not by a single gene. To understand the mechanism of submergence tolerance we selected, two indica rice genotypes namely, I) FR13A, a tolerant indica variety and ii) IR24, a susceptible genotype for this study. We used the 22K rice Oligoarray from Agilent technologies to study the transcript profile in the leaves of the two contrasting rice genotypes under constitutive and submerged conditions at seedling stage. Keywords: Mechanism of submergence tolerance
Project description:A submergence tolerant indica rice cultivar FR13A, was also reported to withstand salt stress and proven in our experiments. The mechanism of tolerance is yet to be studied by forward genetics approach. However, it is known that salt stress tolerance is governed by several QTLs and not by a single gene. To understand the mechanism of such a complex mechanism of salt tolerance we selected, two indica rice genotypes namely, I) FR13A, a tolerant indica variety and ii) IR24, a susceptible genotype for this study. We used the 22K rice Oligoarray from Agilent technologies to study the transcript profile in the leaves of the two contrasting rice genotypes under constitutive and salt stress conditions at seedling stage. Keywords: Mechanism of salt tolerance
Project description:Rice productivity relies heavily on nitrogen fertilization, and improving nitrogen use efficiency (NUE) is important for hybrid rice breeding. Reducing nitrogen inputs is the key to achieving sustainable rice production and reducing environmental problems. Here, we analyzed the genome-wide transcriptomic changes in microRNAs (miRNAs) in the indica rice restorer cultivar NH511 (Nanhui 511) under high (HN) and low nitrogen (LN) conditions. The results showed that NH511 is sensitive to nitrogen supplies and HN conditions promoted the growth its lateral roots at the seedling stage. Furthermore, we identified 483 known miRNAs and 128 novel miRNAs by small RNA sequencing in response to nitrogen in NH511. We also detected 100 differentially expressed genes (DEGs), including 75 upregulated and 25 downregulated DEGs, under HN conditions. Among these DEGs, 43 miRNAs that exhibited a 2-fold change in their expression were identified in response to HN conditions, including 28 upregulated and 15 downregulated genes. Additionally, some differentially expressed miRNAs were further validated by qPCR analysis, which showed that miR443, miR1861b, and miR166k-3p were upregulated, whereas miR395v and miR444b.1 were downregulated under HN conditions. Moreover, the degradomes of possible target genes for miR166k-3p and miR444b.1 and expression variations were analyzed by qPCR at different time points under HN conditions. Our findings revealed comprehensive expression profiles of miRNAs responsive to HN treatments in an indica rice restorer cultivar, which advances our understanding of the regulation of nitrogen signaling mediated by miRNAs and provides novel data for high-NUE hybrid rice cultivation.