Project description:Iron-rich pelagic aggregates (iron snow) were collected directly onto silicate glass filters using an electronic water pump installed below the redoxcline. RNA was extracted and library preparation was done using the NEBNext Ultra II directional RNA library prep kit for Illumina. Data was demultiplied by GATC sequencing company and adaptor was trimmed by Trimgalore. After trimming, data was processed quality control by sickle and mRNA/rRNA sequences were sorted by SortmeRNA. mRNA sequences were blast against NCBI-non redundant protein database and the outputs were meganized in MEGAN to do functional analysis. rRNA sequences were further sorted against bacterial/archeal 16S rRNA, eukaryotic 18S rRNA and 10,000 rRNA sequences of bacterial 16S rRNA, eukaryotic 18S rRNA were subset to do taxonomy analysis.
Project description:Pelagic aggregates function as hotspots for microbial activity and biological carbon pumps for exporting OM fixed by photoautotrophs to sediments in lakes and oceans. In iron-rich (ferruginous) lakes, photoferrotrophic or chemolithoautotrophic bacteria appear to contribute to CO2 fixation by oxidizing reduced iron which leads to the formation of iron-rich pelagic aggregates called iron-snow. In acidic lakes, iron snow is colonized mainly by acidophilic iron-cycling microbes that can trigger interspecies aggregation mechanisms. However, the significance of iron oxidizers in carbon fixation, their general role in iron snow functioning, and the flow of carbon within iron snow is still unclear. Here, we combined a two-year metatranscriptome analysis with a 13CO2 metabolic labeling approach to determine general metabolic activities. Protein-based stable isotope probing (protein-SIP) was used to trace the 13CO2 incorporation in iron snow microcosms over time under both oxic and anoxic conditions. Analysis of our mRNA-derived metatranscriptome data identified four key players (Leptospirillum, Ferrovum, Acidithrix, Acidiphilium) with relative abundances (59.6%-85.7%) in iron snow encoding a variety of ecologically relevant pathways, including carbon fixation, polysaccharide biosynthesis, and flagellar-based motility. We did not detect transcriptional activity for carbon fixation from archaea or eukaryotes. The largest numbers of expressed genes (3008, 2991, 2936) matched to the genomes of our previously obtained iron snow isolates (Acidithrix sp. C25, Acidiphilium sp. C61, Acidocella sp. C78) separately. 13CO2 incorporation studies identified Leptospirillum and Ferrovum, as the main active chemolithoautotrophs under oxic conditions, and Ferrovum was the main active organism under anoxic conditions as well. Small amounts of labeled 13C (Relative isotope abundance: 1.0%-5.3%) were found in the heterotrophic Acidiphilium and Acidocella. Overall, our data show that iron oxidizers play an important role in the formation of iron minerals and CO2 fixation, but the majority of fixed C apparently did not reach other iron snow microbes. This finding suggests that most of the fixed C will be directly exported to the sediment without feeding heterotrophs in the water column in acidic ferruginous lakes.