Project description:A cDNA library was constructed by Novogene (CA, USA) using a Small RNA Sample Pre Kit, and Illumina sequencing was conducted according to company workflow, using 20 million reads. Raw data were filtered for quality as determined by reads with a quality score > 5, reads containing N < 10%, no 5' primer contaminants, and reads with a 3' primer and insert tag. The 3' primer sequence was trimmed and reads with a poly A/T/G/C were removed
Project description:Purpose: The goal of this study is to compare endothelial small RNA transcriptome to identify the target of OASL under basal or stimulated conditions by utilizing miRNA-seq. Methods: Endothelial miRNA profilies of siCTL or siOASL transfected HUVECs were generated by illumina sequencing method, in duplicate. After sequencing, the raw sequence reads are filtered based on quality. The adapter sequences are also trimmed off the raw sequence reads. rRNA removed reads are sequentially aligned to reference genome (GRCh38) and miRNA prediction is performed by miRDeep2. Results: We identified known miRNA in species (miRDeep2) in the HUVECs transfected with siCTL or siOASL. The expression profile of mature miRNA is used to analyze differentially expressed miRNA(DE miRNA). Conclusions: Our study represents the first analysis of endothelial miRNA profiles affected by OASL knockdown with biologic replicates.
Project description:HDMYZ cells were treated with 2ug/ml ActD for 0, 4 and 12 hours. Small RNAs of 15-40 bases were gel-purified from 10 ug total RNA, and subjected to multiplex Illumina small RNA library preparation. Small RNA libraries were sequenced on a HiSeq2000 (Illumina) with 3 samples per lane. To quantify miRNA and isoform abundance, sequence reads were processed by the miRDeep2 package, with the following modifications. First, to remove adaptor sequence, we removed both the main adaptor sequence present in the sequencing reads, as well as the second most abundant adaptor variant. In addition, we did not restrict the size of small RNAs during adaptor removal. Second, we used miRBase v18 for mapping the reads. Third, for quantifying miRNA and isoform frequency, we limited reads to more or equal to 15 bases in length with zero mis-match during mapping. The number of reads that were mapped to known miRNAs was used to normalize read frequencies for each miRNA or each miRNA isoform. For quantification purposes, we only considered miRNAs or isoforms that had frequency >= 1x10e-6 in samples without ActD treatment, which correspond to ~21-30 reads in raw count. These miRNAs or isoforms were referred to as reliably quantifiable.To analyze mapping to the genome, we removed reads that mapped to miRNA precursors. The rest of the reads were then mapped to the genome with Bowtie.