Project description:The morphologies of the amniote phallus and limbs differ dramatically, but these structures share signaling pathways and patterns of gene expression in early development. Thus far, the extent to which genital and limb transcriptional networks share cis-regulatory elements has remained unexplored. Using chromatin immunoprecipitation with an antibody against the histone modification mark H3K27ac followed by Illumina high-throughput sequencing, we identify thousands of active enhancers in developing limbs, genital tubercle, and additional embryonic tissues of the mouse and green anole lizard (Anolis carolinensis). We show in global analyses of cis-regulatory activity that embryonic limbs and genitalia display overlapping patterns of enhancer activity, and that many H3K27ac-marked regions are shared between mouse and green anole. Our findings support the hypothesis that the amniote phallus evolved through co-option of a preexisting appendage developmental program.
Project description:This experiment contains the Anolis carolinensis subset of data from the experiment E-GEOD-41338 (http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-41338/). mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) were generated by deep sequencing using Illumina HiSeq to better understand how species with similar repertoires of protein-coding genes differ so markedly at the phenotypic level.
Project description:How species with similar repertoires of protein coding genes differ so dramatically at the phenotypic level is poorly understood. From comparing the transcriptomes of multiple organs from vertebrate species spanning ~350 million years of evolution, we observe significant differences in alternative splicing complexity between the main vertebrate lineages, with the highest complexity in the primate lineage. Moreover, within as little as six million years, the splicing profiles of physiologically-equivalent organs have diverged to the extent that they are more strongly related to the identity of a species than they are to organ type. Most vertebrate species-specific splicing patterns are governed by the highly variable use of a largely conserved cis-regulatory code. However, a smaller number of pronounced species-dependent splicing changes are predicted to remodel interactions involving factors acting at multiple steps in gene regulation. These events are expected to further contribute to the dramatic diversification of alternative splicing as well as to other gene regulatory changes that contribute to phenotypic differences among vertebrate species. mRNA profiles of several organs (brain, liver, kidney, heart, skeletal muscle) in multiple vertebrate species (mouse, chicken, lizard, frog, pufferfish) generated by deep sequencing using Illumina HiSeq
Project description:Lizards cannot naturally regenerate limbs but are the closest known relatives of mammals capable of epimorphic tail regrowth. However, the mechanisms regulating lizard blastema derivation and chondrogenesis remain unclear. We utilized single-cell RNA sequencing analyses of regenerating lizard tails throughout the course of regeneration to assess diversity and heterogeneity in regeneating tail cell populations.
Project description:Lung function is closely coupled to its structural anatomy, which varies greatly across vertebrates. Although architecturally simple, a complex pattern of airflow is thought to be achieved in the lizard lung due to its cavernous central lumen and honeycomb-shaped wall. We find that the wall of the lizard lung is generated from an initially smooth epithelial sheet, which is pushed through holes in a hexagonal smooth muscle meshwork by forces from fluid pressure, similar to a stress ball. By combining next-generation sequencing with timelapse imaging, we reveal that the hexagonal smooth muscle geometry self-assembles in response to circumferential and axial stresses downstream of pressure. A quantitative computational model predicts the pressure-driven changes in epithelial topology, which we replicate using a 3D-printed engineered tissue model of optogenetically-driven smooth muscle contraction. These results reveal the physical principles used to sculpt the unusual architecture of the lizard lung, which could be exploited as a novel strategy to engineer tissues.
Project description:Comparative RNA-seq profiling of mouse and anole lizard developing limbs and external genitalia, to assess evolutionary and develomental relationships, between the two tissue types based on transcriptomic data RNA-seq profiling of embryonic limb and external genitalia tissue at different stages of development, in mouse and anole lizard, in duplicates, using Illumina HiSeq
Project description:The amniote pallium, a vital component of the forebrain, has undergone considerable evolutionary divergence across species and is critical for a variety of functions including sensation, memory and learning. The relationship between pallial subregions in different species remain elusive, particularly regarding the identification of homologous neurons and their similar or distinct signatures. Here, we utilized single-nucleus RNA sequencing to examine over 130,000 nuclei from macaque (Macaca fascicularis) neocortex, alongside datasets from human (Homo sapiens), mouse (Mus musculus), zebra finch(Taeniopygia guttata), turtle (Chrysemys picta bellii), and lizard (Pogona vitticeps), for a cross-species comparison.
Project description:Abstract: Lizards are distinguished as the only amniotes, and closest relatives of mammals, capable of multilineage epimorphic regeneration. Tail blastemas of green anole lizards (Anolis carolinensis) consist of col3a1+ fibroblastic connective tissue cells enclosed in krt5+ wound epidermis (WE), both of which are required for regeneration. Blastema and WE formation are known to be closely associated with phagocytic cell populations, including macrophages and osteoclasts. However, it remains unclear what specific phagocytic cell types are required to stimulate regeneration. Here we explicitly assess the roles of osteoclast activity during blastema and WE formation in regenerating lizard tails. First, probe-sequencing was perfomed at regenerative timepoints on fibroblasts isolated based on col3a1 expression toward establishing pathways involved in stimulating blastema formation and subsequent regeneration. Next, treatments with osteoclast inhibitor zoledronic acid (ZA) was used to assess roles of osteoclast activity in lizard tail regeneration and fibroblast signlaing. ZA treatment stunted lizard tail regrowth, suggesting osteoclast activity was required for blastema formation and regeneration. Transcriptomic profiling of fibroblasts isolated from ZA- treated and control lizards linked inhibition of oseolat activity with limitations in fibroblats to form extracellular matrix and support WE formation. These results suggests that crosstalk between osteoclasts and fibroblasts regulate blastema and WE formation during lizard tail regeneration.