Project description:In this study, the transcriptional profiles of four deep-sea sculpin fish species (Cottoidei) are described for the first time as part of the study of the adaptation of endemic fishes to different habitats in Lake Baikal. These studies will lead to a deeper understanding of the molecular mechanisms that ensure the adaptation of endemic species to specific habitats in Lake Baikal, even at depths of more than 500 m (up to 1600 m).
Project description:Color is an important trait in nature, playing a role in selection and speciation. The most important colorants in crustaceans are carotenoids, which in complexes with carotenoid-binding proteins provide an astonishing variety of colors from red to violet. Over 350 species and subspecies of amphipods (Crustacea: Amphipoda) endemic to Lake Baikal exhibit an impressive variability of colors and coloration patterns. However, the mechanisms forming this diversity are underexplored. In this work, we analyze the coloration of two species of endemic Lake Baikal amphipods, Eulimnogammarus cyaneus and E. vittatus. These species are brightly colored and, even more importantly, characterized by intraspecific color variability. We showed that the color of either species strongly correlated with the abundance of two putative carotenoid-binding proteins (the relative abundance of these proteins was higher in blue or teal-colored animals than in the orange- or yellow-colored ones.). With LC-MS/MS, we were able to identifiy these proteins, which turned out to be similar to the pheromone/odorant-binding protein family.
Project description:The endemic Cladophorales (Ulvophyceae) of ancient Lake Baikal represent a monophyletic group of very closely related but morphologically diverse species
Project description:In this work, we describe the transcriptional profiles of Baikal omul juveniles after acute and chronic temperature stress exposure. The juveniles were kept for 1.5 months at 9–12 °C, followed by exposure to acute stress (heating to 21 °C for 1 hour) and chronic stress (heating to 21 °C for 24 hours 3 times a week for a month) in the Experimental Freshwater Aquarium Complex for Baikal Hydrobionts at the Limnological Institute (LIN SB RAS). The information on the transcriptional profiles will contribute to further understanding of the mechanisms of adaptation of whitefish to the environment.