Project description:Circulating plasma microRNAs (miRNAs) are well established as biomarkers of several diseases in humans and have recently been used as indicators of environmental exposures in fish. However, the role of plasma miRNAs in regulating acute stress responses in fish is largely unknown. Tissue and plasma miRNAs have recently been associated with excreted miRNAs in humans however external miRNAs have never been measured in fish. The objective of this study was to characterize the plasma miRNA profile in response to acute stress in rainbow trout (Oncorhynchus mykiss), as well as miRNA profiles in novel external samples, (fish epidermal mucus and the surrounding water). RNA was extracted and sequenced from plasma, mucus, and water collected from rainbow trout and their surrounding environment prior to and one-hour following a three-minute air exposure, a known inducer of an acute stress response in fish. Following small RNA-Seq and pathway analysis, we identified differentially expressed plasma miRNAs that targeted biosynthetic, degradation, and metabolic pathways. We successfully isolated miRNA from trout mucus and the surrounding water and detected differences in miRNA expression one-hour post air stress. The altered miRNA profiles in mucus and water were unique to the altered plasma miRNA profile, indicating that the plasma miRNA response was not associated with or immediately reflected in external samples. This research expands our understanding of the role of plasma miRNA in the acute stress response of fish and is the first study to report on the successful isolation and profiling of miRNA from fish mucus and water samples. Measurements of miRNA from plasma, mucus, and water can be further studied and have the potential to be applied in environmental monitoring as non-lethal indicators of acute stress in fish.
Project description:Gene expression was determined for Male accessory gland and testes in different members of the Anopheles gambiae complex, including An. gambiae (Savannah, MRA-762), An. coluzzii (Mopti) [2], An. arabiensis [3], An. merus [4] and An. quadriannalatus [5. All the mosquito stocks were obtained from the Malaria Research and Reference Reagent Resource Center (MR4) in Atlanta (https://www.beiresources.org/Catalog/BEIVectors/MRA-762.aspx). References: 1. MR4 wild stocks information. Access Jenuary 2018. (Kisumu) https://www.beiresources.org/Catalog/BEIVectors/MRA-762.aspx 2. MR4 wild stocks information. Access Jenuary 2018. (Mopti) https://www.beiresources.org/Catalog/BEIVectors/MRA-763.aspx 3. MR4 wild stocks information. Access Jenuary 2018. (arabiensis) https://www.beiresources.org/Catalog/BEIVectors/MRA-856.aspx 4. MR4 wild stocks information. Access Jenuary 2018. (merus) https://www.beiresources.org/Catalog/BEIVectors/MRA-1156.aspx 5. MR4 wild stocks information. Access Jenuary 2018. (quadriannulatus) https://www.beiresources.org/Catalog/BEIVectors/MRA-1155.aspx
Project description:Surviving the nutrient-poor aquatic environment for extended periods of time is important for transmission of various water-borne pathogen to the host, including Legionella pneumophila (Lp). Lp is a leading cause of community-acquired and nosocomial pneumonia called Legionnaires’ disease. The remarkable ability of the bacterium to survive in water for periods ranging from several months to years under starvation conditions alludes to regulatory pathways that mediate adaptation to the water environment. In the present study, we investigated a potential role for the LetA/LetS signal transduction system in the successful survival of Lp in water. During infection of host cells, the LetA/LetS two-component system controls the transition from the replicative phase to the transmissive phase in response to nutrient deprivation. In accordance with previous work, the letS mutant used in the present study is defective for pigment production and contributed to cell size reduction in the post-exponential phase. LetS also contributed to cell size reduction when Lp was exposed to water. Importantly, absence of the sensor kinase resulted in a significantly lower survival rate in water at various temperatures, as well as an increase sensitivity to heat shock. Transcriptomic analysis indicated that a general transcriptomic downshift of major pathways is orchestrated by LetA/LetS upon water exposure leading to better survival, suggesting a potential link with the stringent response. However, the expression of the LetA/S regulated small regulatory RNAs RsmY and RsmZ was not changed in a relAspoT mutant, which indicates that the stringent response and the LetA/S response are two distinct regulatory systems important for the survival of Lp in water.
Project description:Tritium is an ubiquist radionuclide which can be found in the environment due to natural and anthropogenic activities, particularly in aquatic ecosystems. In this context, tritium effects on aquatic species such as fish have to be characterized. HTO (tritiated water) effects were therefore investigated in zebrafish, Danio rerio, a common model in toxicology and ecotoxicology with a fully sequenced genome. Experiments were conducted on early life stages. Larvae were exposed to 0.4 and 4 mGy/h of HTO until 10 days post fertilization. Tritium internalization was quantified and effects were investigated using a proteomic analysis. The global analysis of the proteome was performed after protein extraction at 7 and 10 dpf on zebrafish eggs exposed from 3 hpf to 10 dpf.
Project description:A whole layer functional regeneration can be achieved by Gel-Fla, which ensures an improved healing effect than commercial dressing approaches. The multi-level and stereo regeneration Gel-Fla system provides a promising strategy in diabetic wound healing.
Project description:Here, we used a saturated transposon insertion mutant pool of P. aeruginosa strain PAO1 and transposon insertion sequencing (Tn-Seq), to identify genes conditionally important for survival under conditions mimicking the environment of a nosocomial infection. Conditions tested included tissue culture medium with and without human serum, a murine abscess model, and a human skin organoid model.