Project description:Testing of response of hetertrophic partners (Halomonas sp. HL-48 and Marinobacter sp. HL-58) to both axenic and co-culture growth using both glucose and xylose
Project description:An updated representation of S. meliloti metabolism that was manually-curated and encompasses information from 240 literature sources, which includes transposon-sequencing (Tn-seq) data and Phenotype MicroArray data for wild-type and mutant strains.
Project description:Abstract. Ulcerative colitis (UC) is an intestinal disease characterized by chronic recurrent inflammation, but the underlying mechanism remains undefined and requires in-depth exploration. The aim of the present study was to investigate the biological effects of a small molecular compound M1002 of oxygen-sensing signaling pathway on dextran sulfate sodium (DSS)-induced intestinal inflammation colitis mouse models. It was found that the protective effects of M1002 on DSS-induced colitis. To determine how M1002 exerted its protective effect in DSS-induced colitis, we compared the global gene expression profiles in the gut between DSS control and M1002 treatment colitis mouse groups by RNA-Seq. The results demonstrated that HIF-1 signaling pathway-related genes were significantly upregulated in the gut of M1002 treatment colitis mice, whereas the Inflammatory bowel disease signaling pathway, the TNF signaling pathway, and Cytokines and inflammatory response signaling pathway related genes were significantly downregulated in the M1002 treatment group. 16S rRNA gene sequencing demonstrated remarkable variations in the composition of gut microbiota between DSS control and M1002 treatment colitis mice. Compared with DSS control colitis mice, the relative abundance of Eubacterium_nodatum and Halomonas in the gut microbiota was significantly increased at genus level in the gut of M1002 treatment colitis mice. Based on these findings, we tend to conclude that M1002 might alleviate DSS-induced gut injury in mice by regulation of HIF-1 signaling and up-regulating Eubacterium_nodatum and Halomonas.
Project description:Biomanufacturing remains financially uncompetitive with the lower cost but higher carbon emitting hydrocarbon based chemical industry. Novel chassis organisms may enable cost reductions with respect to traditional chassis such as E. coli and so open an economic rout to low emission biomanufacturing. Extremophile bacteria exemplify that potential. Salt tolerant halomonas species thrive in conditions inimical to other organisms. Their adoption would eliminate the cost of sterilising equipment. Novel chassis are inevitably poorly understood in comparison to established organisms. Rapid characterisation and community data sharing will facilitate organisms’ adoption for biomanufacturing. This paper describes baseline proteomics data set for Halomonas bluephagenesis TD01 under active development for biomanufactoring. The data record comprises a newly sequenced genome for the organism; evidence for expression of 1150 proteins (30% of the proteome) including baseline quantification of 1050 proteins (27% of the proteome) and a spectral library enabling re-use for targeted proteomics assays. Protein data is annotated with KEGG Orthology enabling rapid matching of quantitative data to pathways of interest to biomanufacturing.