Project description:mTORC1-driven noninflammatory HCC and provide insight into further development of a protective strategy against noninflammatory HCC. Background & Aims: Mammalian target of rapamycin complex 1 (mTORC1) is frequently hyperactivated in hepatocellular carcinoma (HCC). Cases of HCC without inflammation and cirrhosis are not rarely seen in clinics. However, the molecular basis of noninflammatory HCC remains unclear. Methods: Spontaneous noninflammatory HCC in mice was triggered by constitutive elevation of mTORC1 by liver-specific Tsc1 knockout (LTsc1KO). A multi-omics approach was utilized on tumor tissues to better understand the molecular basis for the development of HCC in the LTsc1KO model. Results: We showed that LTsc1KO in mice triggered spontaneous noninflammatory HCC, with molecular characteristics similar to those of diethylnitrosamine-mediated noncirrhotic HCC. Mitochondrial and autophagy defects, as well as hepatic metabolic disorder were manifested in HCC development by LTsc1KO. mTORC1 activation on its own regulated an oncogenic network (DNA-damage-inducible transcript 4, nuclear protein 1 and fibroblast growth factor 21), and mTORC1–signal transducer and activator of transcription pathway crosstalk that altered specific metabolic pathways contributed to the development of noninflammatory HCC. Conclusion: Our findings reveal the mechanisms of mTORC1-driven noninflammatory HCC and provide insight into further development of a protective strategy against noninflammatory HCC.
Project description:Background and aimsMammalian target of rapamycin complex 1 (mTORC1) is frequently hyperactivated in hepatocellular carcinoma (HCC). Cases of HCC without inflammation and cirrhosis are not rarely seen in clinics. However, the molecular basis of non-inflammatory HCC remains unclear.MethodsSpontaneous non-inflammatory HCC in mice was triggered by constitutive elevation of mTORC1 by liver-specific TSC1 knockout (LTsc1KO). A multi-omics approach was utilized on tumor tissues to better understand the molecular basis for the development of HCC in the LTsc1KO model.ResultsWe showed that LTsc1KO in mice triggered spontaneous non-inflammatory HCC, with molecular characteristics similar to those of diethylnitrosamine-mediated non-cirrhotic HCC. Mitochondrial and autophagy defects, as well as hepatic metabolic disorder were manifested in HCC development by LTsc1KO. mTORC1 activation on its own regulated an oncogenic network (DNA-damage-inducible transcript 4, nuclear protein 1, and fibroblast growth factor 21), and mTORC1-signal transducer and activator of transcription pathway crosstalk that altered specific metabolic pathways contributed to the development of non-inflammatory HCC.ConclusionOur findings reveal the mechanisms of mTORC1-driven non-inflammatory HCC and provide insight into further development of a protective strategy against non-inflammatory HCC.
Project description:Gp130 receptor engagement on neoplastic cells provides a link by which an inflammatory microenvironment facilitates tumour promotion. Although hyperactivation of the gp130-dependent Stat3 signalling node is commonly observed in solid tumours, Stat3 remains a challenging therapeutic target. To mimic excessive Stat3 signalling, we molecularly validate the gp130FF mouse as a preclinical model for inflammation-associated intestinal-type gastric cancer (IGC), with aberrant mammalian target of rapamycin (mTOR) pathway activity as shared feature. Accordingly, administration of the mTorc1 inhibitor RAD001 reversibly reduced IGC burden in gp130FF mice and suppressed colitis-associated cancer in wild-type mice. Since the therapeutic effect of RAD001 occurs independently of Stat3 hyperactivation, which is also dispensable for gp130-dependent engagement of the PI3K/Akt/mTorc1 pathway, we conclude that mTorc1 signalling limits tumour promoting Stat3 activity The mouse whole-genome gene expression profiling was performed on Illumina's MouseWG-6 v2.0 Expression BeadChips for 24 mice, with 8 mice in each group (gp130WT antral tissue, gp130FF unaffected antral tissue and gp130FF tumour tissue).
Project description:Gp130 receptor engagement on neoplastic cells provides a link by which an inflammatory microenvironment facilitates tumour promotion. Although hyperactivation of the gp130-dependent Stat3 signalling node is commonly observed in solid tumours, Stat3 remains a challenging therapeutic target. To mimic excessive Stat3 signalling, we molecularly validate the gp130FF mouse as a preclinical model for inflammation-associated intestinal-type gastric cancer (IGC), with aberrant mammalian target of rapamycin (mTOR) pathway activity as shared feature. Accordingly, administration of the mTorc1 inhibitor RAD001 reversibly reduced IGC burden in gp130FF mice and suppressed colitis-associated cancer in wild-type mice. Since the therapeutic effect of RAD001 occurs independently of Stat3 hyperactivation, which is also dispensable for gp130-dependent engagement of the PI3K/Akt/mTorc1 pathway, we conclude that mTorc1 signalling limits tumour promoting Stat3 activity
Project description:Lung cancer is the second leading cause of cancer death worldwide and is strongly associated with cisplatin resistance. The transcription factor STAT3 is constitutively activated in cancer cells and coordinates critical cellular processes as survival, self-renewal, and inflammation. In several types of cancer, STAT3 controls the development, immunogenicity, and malignant behavior of tumor cells while dictates the responsiveness to radio- and chemotherapy. It is known that STAT3 phosphorylation on Ser727 by mTOR is necessary for its maximal activation, but the crosstalk between STAT3 and mTOR signaling in cisplatin resistance remains elusive. In this study, using a proteomic label-based approach, we reveal important targets and signaling pathways increased and decreased in cisplatin-resistant A549 lung adenocarcinoma cells.
Project description:The liver plays a protective role in myocardial infarction (MI). However, very little is known about the mechanisms. Here, we identify mineralocorticoid receptor (MR) as a pivotal nexus that conveys communications between the liver and the heart during MI. On one hand, hepatocyte MR deficiency and MR antagonist spironolactone both improve cardiac repair after MI through regulation on hepatic fibroblast growth factor 21 (FGF21), illustrating an MR/FGF21 axis that underlies the liver-to-heart protection against MI. On the other hand, an upstreaming acute interleukin-6 (IL6) / signal transducer and activator of transcription 3 (STAT3) pathway transmits the heart-to-liver signal to suppress MR expression after MI. Hepatocyte IL6 receptor (IL6R) deficiency and STAT3 deficiency both aggravate cardiac injury through their regulation on the MR/FGF21 axis. Therefore, we have unveiled an IL6/STAT3/MR/FGF21 signaling axis that mediates heart-liver crosstalk during MI. Targeting the signaling axis and the crosstalk may provide novel strategies to treat MI and heart failure.
Project description:Many patients have cancers that have increased activity of a protein called STAT3 that contributes critically to the development and growth of their cancer. Despite our knowledge of STAT3’s importance to cancer, scientists and doctors have not developed a drug that targets it and that patients can take to treat their cancer more effectively than treatments that are now available. Tvardi Therapeutics, Incorporated has developed a compound, TTI-101, which can be given by mouth and acts as a direct inhibitor of STAT3. Administration of TTI-101 to mice demonstrated that it blocked growth of cancers of the breast, head and neck, lung, and liver and it was safe when administered at high doses to mice, rats, and dogs. In this application, Tvardi is proposing to further develop TTI-101 for treatment of solid tumors for which the prognosis is dismal. The investigators will determine how safe it is when administered to patients with cancer, determine whether an adequate dose can be administered to patients with cancer that will block STAT3 in their cancer, and determine whether treatment with TTI-101 leads to reduced growth of their cancer.
Project description:In many human cancers the transcription factor STAT3 is constitutively active and contributes to oncogenesis, tumour growth and progression. Recently, gain-of-function mutations of STAT3 have been identified in patients suffering from various haematopoietic malignancies and are postulated to enhance the transcriptional activity of STAT3. We investigated the gene expression and binding profile of the most common STAT3 mutant Y640F compared to wild-type STAT3, describing it's mechanism of action and pinpointing to novel therapeutic intervention sites.