Project description:Branching coral species like the Caribbean Acroporids are long lived and reproduce asexually via breakage of branches. Fragmentation is the dominant mode of local population maintenance for these corals across much of their range. Thus, large genets with many member ramets (colonies) are common. Each of the ramets experiences different microenvironments, especially with respect to light and water flow. Here, we investigate whether colonies that are members of the same genet have different epigenomes because of differences in their microenvironments. The Florida Keys experienced a large- scale coral bleaching event in 2014-2015 caused by high water temperatures. During the event, ramets of the same coral genet bleached differently. Previous work had shown that this was unlikely to be due to their eukaryotic algal symbionts (Symbiodinium ‘fitti’) because each genet of this coral species typically harbors a single strain of S. ‘fitti’. Characterization of the microbiome via 16S tag sequencing did not provide evidence for a central role of microbiome variation in determining bleaching response. Instead, epigenetic changes were significantly correlated with the host’s genetic background, the position of the sampled polyps within the colonies (e.g. tip versus base of colony), and differences in the colonies’ condition during the bleaching event. We conclude that microenvironmental differences in growing conditions led to long-term changes in the way the ramets methylated their genomes and thus to a differential bleaching response.
Project description:Branching coral species like the Caribbean Acroporids are long lived and reproduce asexually via breakage of branches. Fragmentation is the dominant mode of local population maintenance for these corals across much of their range. Thus, large genets with many member ramets (colonies) are common. Each of the ramets experiences different microenvironments, especially with respect to light and water flow. Here, we investigate whether colonies that are members of the same genet have different epigenomes because of differences in their microenvironments. The Florida Keys experienced a large- scale coral bleaching event in 2014-2015 caused by high water temperatures. During the event, ramets of the same coral genet bleached differently. Previous work had shown that this was unlikely to be due to their eukaryotic algal symbionts (Symbiodinium ‘fitti’) because each genet of this coral species typically harbors a single strain of S. ‘fitti’. Characterization of the microbiome via 16S tag sequencing did not provide evidence for a central role of microbiome variation in determining bleaching response. Instead, epigenetic changes were significantly correlated with the host’s genetic background, the position of the sampled polyps within the colonies (e.g. tip versus base of colony), and differences in the colonies’ condition during the bleaching event. We conclude that microenvironmental differences in growing conditions led to long-term changes in the way the ramets methylated their genomes and thus to a differential bleaching response.
Project description:Coral reefs worldwide are facing rapid decline due to coral bleaching. However, knowledge of the physiological characteristics and molecular mechanisms of coral symbionts respond to stress is scarce. Here, metagenomic and metaproteomic approach were utilized to shed light on the changes in the composition and functions of coral symbionts during coral bleaching. The results demonstrated that coral bleaching significantly affected the composition of symbionts, with bacterial communities dominating in bleached corals. Difference analysis of gene and protein indicated that symbiont functional disturbances in response to heat stress, resulting in abnormal energy metabolism that could potentially compromise symbiont health and resilience. Furthermore, our findings highlighted the highly diverse microbial communities of coral symbionts, with beneficial bacteria provide critical services to corals in stress responses, while pathogenic bacteria drive coral bleaching. This study provides comprehensive insights into the complex response mechanisms of coral symbionts under thermal stress and offers fundamental data for future monitoring of coral health.
Project description:The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographic scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a cDNA microarray containing 1,310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. We also identified differentially expressed genes during a time course experiment with four time points across nine days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca2+ homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first large-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca2+ homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis. Keywords: thermal stress response, time course, coral bleaching
Project description:The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographic scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a cDNA microarray containing 1,310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. We also identified differentially expressed genes during a time course experiment with four time points across nine days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca2+ homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first large-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca2+ homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis. Keywords: thermal stress response; coral bleaching
Project description:The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographic scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a cDNA microarray containing 1,310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. We also identified differentially expressed genes during a time course experiment with four time points across nine days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca2+ homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first large-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca2+ homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis. Keywords: thermal stress response, time course, coral bleaching Time course with 4 time points and 4 biological replicates per time point. Each biological replicate at each time point was hybridized to a pooled reference control sample containing RNA from all control non-heat-stressed coral fragments.
Project description:Coral bleaching occurs in response to numerous abiotic stressors, the ecologically most relevant of which is hyperthermic stress due to increasing seawater temperatures. Bleaching events can span large geographic areas and are currently a potent threat to coral reefs worldwide. Much effort has been focused on understanding the molecular and cellular events underlying bleaching, and these studies have mainly utilized heat and light stress regimes. In an effort to determine whether different stressors share common bleaching mechanisms, we used cDNA microarrays for the corals Acropora palmata and Montastraea faveolata (containing > 10,000 features) to measure differential gene expression during darkness stress. This is the first coral microarray experiment aimed at darkness stress, and the first for these species to interrogate gene expression at such a large scale. Our results reveal a striking transcriptomic response to darkness in A. palmata involving chaperone and antioxidant up-regulation, growth arrest, and metabolic modifications. As these responses were also measured during thermal stress, our results suggest that different stressors may share common bleaching mechanisms. Furthermore, our results point to ER stress as a critical cellular event involved in darkness-specific (and possibly more general) molecular bleaching mechanisms. On the other hand, we identified a meager transcriptomic response to darkness in M. faveolata where gene expression differences between host colonies and/or sampling locations were greater than differences between control and stressed fragments. To this end, we discuss the importance of factors related to host genotype, Symbiodinium genotype, and the abiotic environment that influence host gene expression and thereby can hinder an investigator’s ability to measure gene expression during a condition of interest.
Project description:Coral bleaching occurs in response to numerous abiotic stressors, the ecologically most relevant of which is hyperthermic stress due to increasing seawater temperatures. Bleaching events can span large geographic areas and are currently a potent threat to coral reefs worldwide. Much effort has been focused on understanding the molecular and cellular events underlying bleaching, and these studies have mainly utilized heat and light stress regimes. In an effort to determine whether different stressors share common bleaching mechanisms, we used cDNA microarrays for the corals Acropora palmata and Montastraea faveolata (containing > 10,000 features) to measure differential gene expression during darkness stress. This is the first coral microarray experiment aimed at darkness stress, and the first for these species to interrogate gene expression at such a large scale. Our results reveal a striking transcriptomic response to darkness in A. palmata involving chaperone and antioxidant up-regulation, growth arrest, and metabolic modifications. As these responses were also measured during thermal stress, our results suggest that different stressors may share common bleaching mechanisms. Furthermore, our results point to ER stress as a critical cellular event involved in darkness-specific (and possibly more general) molecular bleaching mechanisms. On the other hand, we identified a meager transcriptomic response to darkness in M. faveolata, where gene expression differences between host colonies and/or sampling locations were greater than differences between control and stressed fragments. To this end, we discuss the importance of factors related to host genotype, Symbiodinium genotype, and the abiotic environment that influence host gene expression and thereby can hinder an investigator’s ability to measure gene expression during a condition of interest.
Project description:The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographic scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a cDNA microarray containing 1,310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. We also identified differentially expressed genes during a time course experiment with four time points across nine days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca2+ homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first large-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca2+ homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis. Keywords: thermal stress response; coral bleaching 5 control and 5 heat-stressed RNA samples were hybridized in a 5-replicate dye-swap design (10 total hyb's).