Project description:Enterococcus faecalis is a common commensal organism and a prolific nosocomial pathogen that causes biofilm-associated infections. Numerous E. faecalis OG1RF genes required for biofilm formation have been identified, but few studies have compared genetic determinants of biofilm formation and biofilm morphology across multiple conditions. Here, we cultured transposon (Tn) libraries in CDC biofilm reactors in two different media and used Tn sequencing (TnSeq) to identify core and accessory biofilm determinants, including many genes that are poorly characterized or annotated as hypothetical. Multiple secondary assays (96-well plates, submerged Aclar, and MultiRep biofilm reactors) were used to validate phenotypes of new biofilm determinants.
Project description:The physiological and transcriptional response of Nitrosomonas europaea biofilms to phenol and toluene was examined and compared to suspended cells. Biofilms were grown in Drip Flow Biofilm Reactors under continuous flow conditions of growth medium containing ammonia as growth substrate. The responses of N. europaea biofilms to the aromatic hydrocarbons phenol and toluene were determined during short-term (3 h) additions of each compound to the biofilms. Ammonia oxidation in the biofilms was inhibited 50% by 60 uM phenol and 100 uM toluene. These concentrations were chosen for microarray analysis of phenol- and toluene-exposed N. europaea biofilms. Liquid batch cultures of exponentially growing N. europaea cells were harvested alongside the biofilms to determine differential gene expression between attached and suspended growth of N. europaea. Four sample groups of N. europaea cells were used in this study, with biological triplicates of each group. Groups were: Control (untreated) biofilms, phenol-exposed biofilms, toluene-exposed biofilms, and exponentially growing suspended cells. Biofilms were grown in Drip Flow Biofilm Reactors containing 4 independent growth channels and subject to 2 hour inhibition tests. During each experiment, 2 biofilm channels served as control with no inhibitor present and the other 2 biofilm channels were exposed to either 60 uM phenol or 100 uM toluene. Nitrite production was monitored throughout the experiment, and the given concentrations of phenol and toluene resulted in 50% inhibition of ammonia oxidation by the biofilms. Suspended cells were grown in batch reactors. Three 4-plex NimbleGen microarray chips were used, and each chip contained one sample from each experimental group. QC of samples was determined by spectrophotometric methods and using Agilent bioanalyzer traces to determine purity and integrity of RNA and cDNA. A sample tracking report was used to verify the correct hybridization of each sample to the intended array.
Project description:The physiological and transcriptional response of Nitrosomonas europaea biofilms to phenol and toluene was examined and compared to suspended cells. Biofilms were grown in Drip Flow Biofilm Reactors under continuous flow conditions of growth medium containing ammonia as growth substrate. The responses of N. europaea biofilms to the aromatic hydrocarbons phenol and toluene were determined during short-term (3 h) additions of each compound to the biofilms. Ammonia oxidation in the biofilms was inhibited 50% by 60 uM phenol and 100 uM toluene. These concentrations were chosen for microarray analysis of phenol- and toluene-exposed N. europaea biofilms. Liquid batch cultures of exponentially growing N. europaea cells were harvested alongside the biofilms to determine differential gene expression between attached and suspended growth of N. europaea.
Project description:We reported the microbial communities in wastewater between conventional membrane bioreactor (MBR) system and biofilm MBR system using Illumina sequencing.
Project description:Investigation of the kinetics of whole genome gene expression level changes in Bacillus subtilis NDmed strain during formation of submerged biofilm and pellicle. The Bacillus subtilis NDmed strain analyzed in this study is able to form thick and highly structured submerged biofilms as described in Bridier et al., (2011) The Spatial Architecture of Bacillus subtilis Biofilms Deciphered Using a Surface-Associated Model and In Situ Imaging. PLoS ONE 6(1):e16177.
Project description:Microbiome of strategies for ammonia removal with the sequencing batch moving bed biofilm reactor treating cheese production wastewater
Project description:Wastewater treatment plants use a variety of bioreactor types and configurations to remove organic matter and nutrients. Little is known regarding the effects of different configurations and within-plant immigration on microbial community dynamics. Previously, we found that the structure of ammonia-oxidizing bacterial (AOB) communities in a full-scale dispersed growth activated sludge bioreactor correlated strongly with levels of NO2- entering the reactor from an upstream trickling filter (Wells et al 2009). Here, to further examine this puzzling association, we profile within-plant microbial biogeography (spatial variation) and test the hypothesis that substantial microbial immigration occurs along a transect (raw influent, trickling filter biofilm, trickling filter effluent, and activated sludge) at the same full-scale wastewater treatment plant. AOB amoA gene abundance increased >30-fold between influent and trickling filter effluent concomitant with NO2- production, indicating unexpected growth and activity of AOB within the trickling filter. Nitrosomonas europaea was the dominant AOB phylotype in trickling filter biofilm and effluent, while a distinct ‘Nitrosomonas-like’ lineage dominated in activated sludge. Prior time series indicated that this ‘Nitrosomonas-like’ lineage was dominant when NO2- levels in the trickling filter effluent (i.e., activated sludge influent) were low, while N. europaea became dominant in the activated sludge when NO2- levels were high. This is consistent with the hypothesis that NO2- production may co-occur with biofilm sloughing, releasing N. europaea from the trickling filter into the activated sludge bioreactor. Phylogenetic microarray (PhyloChip) analyses revealed significant spatial variation in taxonomic diversity, including a large excess of methanogens in the trickling filter relative to activated sludge and attenuation of Enterobacteriaceae across the transect, and demonstrated transport of a highly diverse microbial community via the trickling filter effluent to the activated sludge bioreactor. Our results provide compelling evidence that substantial immigration between coupled process units occurs and may exert significant influence over microbial community dynamics within staged bioreactors.