Project description:Adelgids (Insecta: Hemiptera: Adelgidae) are known as severe pests of various conifers in North America, Canada, Europe and Asia. Here, we present the first molecular identification of bacteriocyte-associated symbionts in these plant sap-sucking insects. Three geographically distant populations of members of the Adelges nordmannianae/piceae complex, identified based on coI and ef1alpha gene sequences, were investigated. Electron and light microscopy revealed two morphologically different endosymbionts, coccoid or polymorphic, which are located in distinct bacteriocytes. Phylogenetic analyses of their 16S and 23S rRNA gene sequences assigned both symbionts to novel lineages within the Gammaproteobacteria sharing <92% 16S rRNA sequence similarity with each other and showing no close relationship with known symbionts of insects. Their identity and intracellular location were confirmed by fluorescence in situ hybridization, and the names 'Candidatus Steffania adelgidicola' and 'Candidatus Ecksteinia adelgidicola' are proposed for tentative classification. Both symbionts were present in all individuals of all investigated populations and in different adelgid life stages including eggs, suggesting vertical transmission from mother to offspring. An 85 kb genome fragment of 'Candidatus S. adelgidicola' was reconstructed based on a metagenomic library created from purified symbionts. Genomic features including the frequency of pseudogenes, the average length of intergenic regions and the presence of several genes which are absent in other long-term obligate symbionts, suggested that 'Candidatus S. adelgidicola' is an evolutionarily young bacteriocyte-associated symbiont, which has been acquired after diversification of adelgids from their aphid sister group.
Project description:Quorum sensing (QS) is a complex cell-cell communication mechanism that coordinates population-level behaviors in microbes. In eukaryotes, this phenomenon has been extensively described in the dimorphic yeast Candida albicans as its main QS molecule, the sesquiterpene alcohol farnesol, is responsible for various phenotypic (i.e., inhibition of yeast-to-hyphae transition, biofilm formation and, hence, pathogenesis) and metabolic (i.e., induction of oxidative stress and apoptosis) changes. Ophiostoma piceae CECT 20416 is a dimorphic saprotrophic ascomycete with biotechnological interest that also produces farnesol as a QS molecule, but in this case, the alcohol promotes the morphological transition to the mycelial form, biofilm formation, enzyme secretion, and melanin production. Here, we characterized the physiological response of Ophiostoma piceae to farnesol, and the molecular components of the QS system of this fungus have been investigated using a ‘multiomics’ approach that involved genomic, transcriptomic, and proteomic analyses. Some genes identified in this work are proposed as key factors in farnesol transport and signaling. We have also cataloged the genes undergoing major transcriptional changes triggered by the presence of the autoinducer, such as cell-wall remodeling, ROS protection, and melanin biosynthesis, using self-organizing maps (SOMs). This analysis could be useful for applications in the forestry industry, for enzyme production, and for the valorization of residues. Furthermore, it might as well help to investigate the QS mechanisms of clinically relevant fungi phylogenetically related to Ophiostoma.